Skip to main content
Log in

Unique Continuation Properties for One Dimensional Higher Order Schrödinger Equations

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We study two types of unique continuation properties for the higher order Schrödinger equation with potential The first one says if u has certain exponential decay at two times, then \(u\equiv 0\), and this result is sharp by constructing critical non-trivial solutions. The second one says if \(u\equiv 0\) in an arbitrary half-space of \(\mathbb {R}^{1+n}\), then \(u\equiv 0\) identically. The uniqueness theorems are given when \(n=1\), but we also prove partial results when \(n\in \mathbb {N}_+\) for their own interests. Possibility or obstacles to proving these unique continuation properties in higher spatial dimensions are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bustamante, E., Jiménez Urrea, J., Mejía, J.: On the unique continuation property of solutions of the three-dimensional Zakharov-Kuznetsov equation. Nonlinear Anal. Real World Appl. 39, 537–553 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cossetti, L., Fanelli, L., Linares, F.: Uniqueness results for Zakharov-Kuznetsov equation. Comm. Partial Differ. Equ. 44(6), 504–544 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dawson, L.: Uniqueness properties of higher order dispersive equations. J. Differ. Equ. 236(1), 199–236 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Duan, Z., Zheng, Q.: Unique continuation properties of the higher order nonlinear Schrödinger equations in one dimension. J. Math. Anal. Appl. 449(2), 941–965 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Duan, Z., Zheng, Q., Feng, J.: Long range scattering for higher order Schrödinger operators. J. Differ. Equ. 254(8), 3329–3351 (2013)

    Article  MATH  Google Scholar 

  6. Escauriaza, L., Kenig, C.E., Ponce, G., Vega, L.: On uniqueness properties of solutions of Schrödinger equations. Commun. Partial Differ. Equ. 31(12), 1811–1823 (2006)

    Article  MATH  Google Scholar 

  7. Escauriaza, L., Kenig, C.E., Ponce, G., Vega, L.: On uniqueness properties of solutions of the \(k\)-generalized KdV equations. J. Funct. Anal. 244(2), 504–535 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Escauriaza, L., Kenig, C.E., Ponce, G., Vega, L.: Hardy’s uncertainty principle, convexity and Schrödinger evolutions. J. Eur. Math. Soc. 10(4), 883–907 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Escauriaza, L., Kenig, C.E., Ponce, G., Vega, L.: Convexity of free solutions of Schrödinger equations with Gaussian decay. Math. Res. Lett. 15(5), 957–971 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Escauriaza, L., Kenig, C.E., Ponce, G., Vega, L.: The sharp Hardy uncertainty principle for Schrödinger evolutions. Duke Math. J. 155(1), 163–187 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Escauriaza, L., Kenig, C.E., Ponce, G., Vega, L.: Uncertainty principle of Morgan type and Schrödinger evolutions. J. Lond. Math. Soc. 81(1), 187–207 (2011)

    Article  MATH  Google Scholar 

  12. Escauriaza, L., Kenig, C.E., Ponce, G., Vega, L.: Unique continuation for Schrödinger evolutions, with applications to profiles of concentration and traveling waves. Commun. Math. Phys. 305(2), 487–512 (2011)

    Article  MATH  Google Scholar 

  13. Escauriaza, L., Kenig, C.E., Ponce, G., Vega, L.: Uniqueness properties of solutions to Schrödinger equations. Bull. Am. Math. Soc. 49(3), 415–442 (2012)

    Article  MATH  Google Scholar 

  14. Feng, H., Soffer, A., Yao, X.: Decay estimates and Strichartz estimates of fourth-order Schrödinger operator. J. Funct. Anal. 274(2), 605–658 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Feng, H., Soffer, A., Wu, Z., Yao, X.: Decay estimates for higher-order elliptic operators. Trans. Am. Math. Soc. 373(4), 2805–2859 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gel’fand, I.M., Šilov, G.E.: Fourier transforms of rapidly increasing functions and questions of uniqueness of the solution of Cauchy’s problem. Uspehi Matem. Nauk 8(6), 3–54 (1953)

    MathSciNet  Google Scholar 

  17. Grafakos, L.: Classical Fourier analysis. In: Graduate texts in mathematics, vol. 249, 2nd edn. Springer, New York (2008)

    Google Scholar 

  18. Hörmander, L.: Uniqueness theorems for second order elliptic differential equations. Commun. Partial Differ. Equ. 8(1), 21–64 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hörmander, L.: The analysis of linear partial differential operators. II. Differential operators with constant coefficients. Springer, Berlin (1983)

    MATH  Google Scholar 

  20. Hörmander, L.: The analysis of linear partial differential operators. III. Pseudo-differential operators. Springer, Berlin (1985)

    MATH  Google Scholar 

  21. Hörmander, L.: The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis, 2nd edn. Springer, Berlin (1990)

    MATH  Google Scholar 

  22. Huang, T.: Unique continuation through hyperplane for higher order parabolic and Schrödinger equations. Commun. Partial Differ. Equ. 46(7), 1372–1388 (2021)

    Article  MATH  Google Scholar 

  23. Huang, S., Soffer, A.: Uncertainty principle, minimal escape velocities, and observability inequalities for Schrödinger equations. Am. J. Math. 143(3), 753–781 (2021)

    Article  MATH  Google Scholar 

  24. Huang, T., Huang, S., Zheng, Q.: Inhomogeneous oscillatory integrals and global smoothing effects for dispersive equations. J. Differ. Equ. 263(12), 8606–8629 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Huang, S., Wang, M., Zheng, Q., Duan, Z.: \(L^p\) estimates for fractional Schrödinger operators with Kato class potentials. J. Differ. Equ. 265(9), 4181–4212 (2018)

    Article  MATH  Google Scholar 

  26. Ionescu, I.D., Kenig, C.E.: \(L^p\) Carleman inequalities and uniqueness of solutions of nonlinear Schrödinger equations. Acta Math. 193(2), 193–239 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ionescu, I.D., Kenig, C.E.: Uniqueness properties of solutions of Schrödinger equations. J. Funct. Anal. 232(1), 90–136 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Isakov, V.: Carleman type estimates in an anisotropic case and applications. J. Differ. Equ. 105(2), 217–238 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Isaza, P.: Unique continuation principle for high order equations of Korteweg-de Vries type. Electron. J. Differ. Equ. 246, 25 (2013)

    MathSciNet  MATH  Google Scholar 

  30. Isaza, P., Linares, F., Ponce, G.: On decay properties of solutions of the \(k\)-generalized KdV equation. Commun. Math. Phys. 324(1), 129–146 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Karpman, V.I.: Influence of high-order dispersion on self-focusing. I. Qualitative investigation. Phys. Lett. A 160(6), 531–537 (1991)

    Article  Google Scholar 

  32. Kenig, C.E., Sogge, C.D.: A note on unique continuation for Schrödinger operator. Proc. Am. Math. Soc. 103(2), 543–546 (1988)

    MATH  Google Scholar 

  33. Kenig, C.E., Ruiz, A., Sogge, C.D.: Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators. Duke Math. J. 55(2), 329–347 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kenig, C.E., Ponce, G., Vega, L.: Oscillatory integrals and regularity of dispersive equations. Indiana Univ. Math. J. 40(1), 33–69 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kenig, C.E., Ponce, G., Vega, L.: On the support of solutions to the generalized KdV equation. Ann. Inst. H .Poincaré Anal. Non Linéaire 19(2), 191–208 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kenig, C.E., Ponce, G., Vega, L.: On the unique continuation of solutions to the generalized KdV equation. Math. Res. Lett. 10(5–6), 833–846 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kenig, C.E., Ponce, G., Vega, L.: On unique continuation for nonlinear Schrödinger equations. Commun. Pure Appl. Math. 56(9), 1247–1262 (2003)

    Article  MATH  Google Scholar 

  38. Kenig, C. E., Ponce, G., Vega, L.: On the uniqueness of solutions of higher order nonlinear dispersive equations. In: Inverse problems: theory and applications (Cortona/Pisa, 2002), 137C146, Contemp. Math., 333, Amer. Math. Soc., Providence, RI (2003)

  39. Lee, S., Seo, I.: A note on unique continuation for the Schrödinger equation. J. Math. Anal. Appl. 289(1), 461–468 (2012)

    Article  MATH  Google Scholar 

  40. Li, Z., Wang, M.: Observability inequality at two time points for KdV equations. SIAM J. Math. Anal. 53(2), 1944–1957 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  41. Miyachi, A.: On some Fourier multipliers for \(H^p({ R}^n)\). J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27(1), 157–179 (1980)

    MathSciNet  MATH  Google Scholar 

  42. Miyachi, A.: On some singular Fourier multipliers. J. Fac. Sci. Univ. Tokyo Sect. IA Math 28(2), 267–315 (1981)

    MathSciNet  MATH  Google Scholar 

  43. Saut, J.-C., Scheurer, B.: Unique continuation for some evolution equations. J. Differ. Equ. 66(1), 118–139 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  44. Seo, I.: Unique continuation for the Schrödinger equation with potentials in Wiener amalgam spaces. Indiana Univ. Math. J. 60(4), 1203–1227 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  45. Seo, I.: Carleman estimates for the Schrödinger operator and applications to unique continuation. Commun. Pure Appl. Anal. 11(3), 1013–1036 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. Seo, I.: Global unique continuation from a half space for the Schrödinger equation. J. Funct. Anal. 266(1), 85–98 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Seo, I.: From resolvent estimates to unique continuation for the Schrödinger equation. Trans. Am. Math. Soc. 368(12), 8755–8784 (2016)

    Article  MATH  Google Scholar 

  48. Stein, E.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  49. Strichartz, R.S.: Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J. 44(3), 705–714 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  50. Wang, G., Wang, M., Zhang, Y.: Observability and unique continuation inequalities for the Schrödinger equation. J. Eur. Math. Soc. 21(11), 3513–3572 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhang, B.: Unique continuation for the Korteweg-de Vries equation. SIAM J. Math. Anal. 23(1), 55–71 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhang, B.-Y.: Unique continuation properties of the nonlinear Schrödinger equation. Proc. R. Soc. Edinb. Sect. A 127(1), 191–205 (1997)

    Article  MATH  Google Scholar 

  53. Zheng, Q., Zhang, J.: Gaussian estimates and regularized groups. Proc. Am. Math. Soc. 127(4), 1089–1096 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zheng, Q., Yao, X., Fan, D.: Convex hypersurfaces and \(L^{p}\) estimates for Schrödinger equations. J. Funct. Anal. 208(1), 122–139 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

T. Huang is supported by the National Natural Science Foundation of China No. 12101621, the China Postdoctoral Science Foundation No. 2020M672929, and the Guangdong Basic and Applied Basic Research Foundation No. 2020A1515111048. S. Huang is supported by the National Natural Science Foundation of China Nos. 11801188, 11971188 and 12171178. Q. Zheng is supported by the National Natural Science Foundation of China Nos. 11801188 and 12171178. The Authors would like to thank the anonymous referee for carefully reading the manuscript and providing valuable comments that helped improve the exposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanlin Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, T., Huang, S. & Zheng, Q. Unique Continuation Properties for One Dimensional Higher Order Schrödinger Equations. J Geom Anal 32, 167 (2022). https://doi.org/10.1007/s12220-022-00906-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-022-00906-2

Keywords

Mathematics Subject Classification

Navigation