Skip to main content

Advertisement

Log in

Isoperimetric Inequality on a Metric Measure Space and Lipschitz Order with an Additive Error

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, we obtain the stability of isoperimetric inequalities with respect to the concentrate topology. The concentration topology is weaker than the \(\square \)-topology which is like the weak topology. As an application, we obtain isoperimetric inequalities on the non-discrete n-dimensional \(l^1\)-cube and \(l^1\)-torus by taking the limits of isoperimetric inequalities of discrete \(l^1\)-cubes and \(l^1\)-torus. The method of this paper builds on by introducing an \(\varepsilon \)-relaxed (iso-)Lipschitz order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel (2005)

    MATH  Google Scholar 

  2. Amir, D., Milman, V.D.: Unconditional and symmetric sets in n-dimensional normed spaces. Israel J. Math. 37(1–2), 3–20 (1980). https://doi.org/10.1007/BF02762864

    Article  MathSciNet  MATH  Google Scholar 

  3. Bobkov, S.G., Houdré, C.: Isoperimetric constants for product probability measures. Ann. Probab. 25(1), 184–205 (1997). https://doi.org/10.1214/aop/1024404284

    Article  MathSciNet  MATH  Google Scholar 

  4. Bollobás, B., Leader, I.: An isoperimetric inequality on the discrete torus. SIAM J. Discrete Math. 3(1), 32–37 (1990). https://doi.org/10.1137/0403004

    Article  MathSciNet  MATH  Google Scholar 

  5. Bollobás, B., Leader, I.: Compressions and isoperimetric inequalities. J. Combin. Theory Ser. A 56(1), 47–62 (1991). https://doi.org/10.1016/0097-3165(91)90021-8

    Article  MathSciNet  MATH  Google Scholar 

  6. Borell, C.: The Brunn-Minkowski inequality in Gauss space. Invent. Math. 30(2), 207–216 (1975). https://doi.org/10.1007/BF01425510

    Article  MathSciNet  MATH  Google Scholar 

  7. Cavalletti, F., Mondino, A.: Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds. Invent. Math. 208(3), 803–849 (2017). https://doi.org/10.1007/s00222-016-0700-6

    Article  MathSciNet  MATH  Google Scholar 

  8. Eichmair, M., Metzger, J.: Unique isoperimetric foliations of asymptotically at manifolds in all dimensions. Invent. Math. 194(3), 591–630 (2013). https://doi.org/10.1007/s00222-013-0452-5

    Article  MathSciNet  MATH  Google Scholar 

  9. Feller, W.: An Introduction to Probability Theory and its Applications, vol. II, 2nd edn. Wiley, New York (1971)

    MATH  Google Scholar 

  10. Figiel, T., Lindenstrauss, J., Milman, V.D.: The dimension of almost spherical sections of convex bodies. Acta Math. 139(1–2), 53–94 (1977)

    Article  MathSciNet  Google Scholar 

  11. Gromov, M.: Isoperimetry of waists and concentration of maps. Geom. Funct. Anal. 13(1), 178–215 (2003)

    Article  MathSciNet  Google Scholar 

  12. Gromov, M.: Metric structures for Riemannian and non-Riemannian spaces, Reprint of the 2001 English edition, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2007. Based on the 1981 French original; With appendices by M. Katz, P. Pansu and S. Semmes; Translated from the French by Sean Michael Bates

  13. Gromov, M., Milman, V.D.: Generalization of the spherical isoperimetric inequality to uniformly convex Banach spaces. Compos. Math. 62(3), 263–282 (1987)

    MathSciNet  MATH  Google Scholar 

  14. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58, 13–30 (1963)

    Article  MathSciNet  Google Scholar 

  15. Kloeckner, B.: Sharp quantitative isoperimetric inequalities in the L1 Minkowski plane. Proc. Am. Math. Soc. 138(10), 3671–3678 (2010). https://doi.org/10.1090/S0002-9939-10-10366-9

    Article  MathSciNet  MATH  Google Scholar 

  16. Lévy, P.: Problèmes concrets d’analyse fonctionnelle. Avec un complément sur les fonctionnelles analytiques par F. Pellegrino, Gauthier-Villars, Paris, 1951 (French). 2d ed

  17. Ledoux, M.: The concentration of measure phenomenon, Mathematical Surveys and Monographs, Vol. 89, American Mathematical Society, Providence, RI (2001). MR1849347

  18. Dellacherie, C., Meyer, P.-A.: Probabilities and Potential. North-Holland Mathematics Studies, vol. 29. North-Holland Publishing Co., Amsterdam (1978)

    MATH  Google Scholar 

  19. Nakajima, H.: The maximum of the 1-measurement of a metric measure space. J. Math. Soc. Japan 71(2), 635–650 (2019). https://doi.org/10.2969/jmsj/78177817

    Article  MathSciNet  MATH  Google Scholar 

  20. Nakajima, H., Shioya, T.: Isoperimetric rigidity and distributions of 1-Lipschitz functions. Adv. Math. 349, 1198–1233 (2019)

    Article  MathSciNet  Google Scholar 

  21. Shioya, T.: Metric Measure Geometry. IRMA Lectures in Mathematics and Theoretical Physics. Gromov’s Theory of Convergence and Concentration of Metrics and Measures, vol. 25. EMS Publishing House, Zürich (2016)

    Book  Google Scholar 

  22. Sodin, S.: An isoperimetric inequality on the lp balls. Ann. Inst. Henri Poincaré Probab. Stat. 44(2), 362–373 (2008). https://doi.org/10.1214/07-AIHP121. ((English, with English and French summaries))

    Article  MathSciNet  MATH  Google Scholar 

  23. Sudakov, V. N., Cirel0son, B. S.: Extremal properties of half-spaces for spherically invariant measures, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 41, 14–24, 165 (1974) (Russian). Problems in the theory of probability distributions, II

  24. Talagrand, M.: Concentration of measure and isoperimetric inequalities in product spaces. Inst. Hautes Études Sci. Publ. Math. 81, 73–205 (1995)

    Article  MathSciNet  Google Scholar 

  25. Taylor, J.E.: Crystalline variational problems. Bull. Am. Math. Soc. 84(4), 568–588 (1978). https://doi.org/10.1090/S0002-9904-1978-14499-1

    Article  MathSciNet  MATH  Google Scholar 

  26. Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence, RI (2003)

    MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Professor Takashi Shioya for many helpful suggestions. He also thanks Dr. Daisuke Kazukawa and Dr. Shinichiro Kobayashi for many stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Nakajima.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author was supported by JSPS KAKENHI Grant Number 19J10866.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakajima, H. Isoperimetric Inequality on a Metric Measure Space and Lipschitz Order with an Additive Error. J Geom Anal 32, 35 (2022). https://doi.org/10.1007/s12220-021-00773-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-021-00773-3

Keywords

Mathematics Subject Classification

Navigation