Skip to main content
Log in

Cartan Connections for Stochastic Developments on sub-Riemannian Manifolds

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Analogous to the characterisation of Brownian motion on a Riemannian manifold as the development of Brownian motion on a Euclidean space, we construct sub-Riemannian diffusions on equinilpotentisable sub-Riemannian manifolds by developing a canonical stochastic process arising as the lift of Brownian motion to an associated model space. The notion of stochastic development we introduce for equinilpotentisable sub-Riemannian manifolds uses Cartan connections, which take the place of the Levi-Civita connection in Riemannian geometry. We first derive a general expression for the generator of the stochastic process which is the stochastic development with respect to a Cartan connection of the lift of Brownian motion to the model space. We further provide a necessary and sufficient condition for the existence of a Cartan connection which develops the canonical stochastic process to the sub-Riemannian diffusion associated with the sub-Laplacian defined with respect to the Popp’s volume. We illustrate the construction of a suitable Cartan connection for free sub-Riemannian structures with two generators and we discuss an example where the condition is not satisfied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseevsky, D., Medvedev, A., Slovák, J.: Constant curvature models in sub-Riemannian geometry. J. Geom. Phys. 138, 241–256 (2019). https://doi.org/10.1016/j.geomphys.2018.09.013

    Article  MathSciNet  MATH  Google Scholar 

  2. Angst, J., Bailleul, I., Tardif, C.: Kinetic Brownian motion on Riemannian manifolds. Electron. J. Probab. 20, 1–40 (2015). https://doi.org/10.1214/EJP.v20-4054

    Article  MathSciNet  MATH  Google Scholar 

  3. Bailleul, I., Mesnager, L., Norris, J.: Small-time fluctuations for the bridge of a sub-Riemannian diffusion. Ann. Sci. Éc. Norm. Supér. 54(3), 549–586 (2021)

    Article  MathSciNet  Google Scholar 

  4. Barilari, D., Boscain, U., Neel, R.W.: Small-time heat kernel asymptotics at the sub-Riemannian cut locus. J. Differ. Geom. 92(3), 373–416 (2012)

    Article  MathSciNet  Google Scholar 

  5. Barilari, D., Rizzi, L.: A formula for Popp’s volume in sub-Riemannian geometry. Anal. Geom. Metr. Spaces 1, 42–57 (2013). https://doi.org/10.2478/agms-2012-0004

    Article  MathSciNet  MATH  Google Scholar 

  6. Baudoin, F., Feng, Q., Gordina, M.: Integration by parts and quasi-invariance for the horizontal Wiener measure on foliated compact manifolds. J. Funct. Anal. 277(5), 1362–1422 (2019). https://doi.org/10.1016/j.jfa.2019.06.006

    Article  MathSciNet  MATH  Google Scholar 

  7. Ben Arous, G.: Développement asymptotique du noyau de la chaleur hypoelliptique hors du cut-locus. Ann. Sci. École Normale Super. 21(3), 307–331 (1988)

    Article  Google Scholar 

  8. Ben Arous, G.: Développement asymptotique du noyau de la chaleur hypoelliptique sur la diagonale. Ann. Inst. Fourier (Grenoble) 39(1), 73–99 (1989)

    Article  MathSciNet  Google Scholar 

  9. Beschastnyi, I., Medvedev, A.: Left-invariant sub-Riemannian Engel structures: abnormal geodesics and integrability. SIAM J. Control Optim. 56(5), 3524–3537 (2018). https://doi.org/10.1137/16M1106511

    Article  MathSciNet  MATH  Google Scholar 

  10. Boscain, U., Neel, R., Rizzi, L.: Intrinsic random walks and sub-Laplacians in sub-Riemannian geometry. Adv. Math. 314, 124–184 (2017). https://doi.org/10.1016/j.aim.2017.04.024

    Article  MathSciNet  MATH  Google Scholar 

  11. de Verdière, Y.C., Hillairet, L., Trélat, E.: Small-time asymptotics of hypoelliptic heat kernels near the diagonal, nilpotentization and related results. Ann. H. Lebesgue 4, 897–971 (2021)

    Article  MathSciNet  Google Scholar 

  12. Doubrov, B., Slovák, J.: Inclusions between parabolic geometries. Pure Appl. Math. Q. 6(3, Special Issue: In honor of Joseph J. Kohn. Part 1), 755–780 (2010). https://doi.org/10.4310/PAMQ.2010.v6.n3.a7

  13. Émery, M.: Stochastic Calculus in Manifolds. Springer, Berlin (1989). https://doi.org/10.1007/978-3-642-75051-9

    Book  MATH  Google Scholar 

  14. Franchi, J., Le Jan, Y.: Relativistic diffusions and Schwarzschild geometry. Comm. Pure Appl. Math. 60(2), 187–251 (2007). https://doi.org/10.1002/cpa.20140

  15. Gordina, M., Laetsch, T.: A convergence to Brownian motion on sub-Riemannian manifolds. Trans. Am. Math. Soc. 369(9), 6263–6278 (2017). https://doi.org/10.1090/tran/6831

    Article  MathSciNet  MATH  Google Scholar 

  16. Grigor’yan, A.: Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Am. Math. Soc. (N.S.) 36(2), 135–249 (1999). https://doi.org/10.1090/S0273-0979-99-00776-4

    Article  MathSciNet  MATH  Google Scholar 

  17. Grong, E.: Canonical connections on sub-Riemannian manifolds with constant symbol. http://arxiv.org/abs/2010.05366 (2021)

  18. Habermann, K.: Brownian Motion on a Riemannian Manifold. Part III Essay for Master of Mathematics of the Mathematical Tripos at Cambridge. University of Cambridge, Cambridge (2013)

    Google Scholar 

  19. Habermann, K.: Geometry of sub-Riemannian diffusion processes. PhD thesis (2018). Available through the University of Cambridge Repository. https://doi.org/10.17863/CAM.18862

  20. Habermann, K.: Small-time fluctuations for sub-Riemannian diffusion loops. Probab. Theory Relat. Fields 171(3–4), 617–652 (2018). https://doi.org/10.1007/s00440-017-0788-7

    Article  MathSciNet  MATH  Google Scholar 

  21. Hsu, E.P.: Stochastic Analysis on Manifolds, vol. 38. American Mathematical Society, Providence (2002). https://doi.org/10.1090/gsm/038

    Book  MATH  Google Scholar 

  22. Jørgensen, E.: The central limit problem for geodesic random walks. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 32, 1–64 (1975). https://doi.org/10.1007/BF00533088

    Article  MathSciNet  MATH  Google Scholar 

  23. Métivier, G.: Fonction spectrale et valeurs propres d’une classe d’opérateurs non elliptiques. Comm. Partial Differ. Equ. 1(5), 467–519 (1976). https://doi.org/10.1080/03605307608820018

    Article  MATH  Google Scholar 

  24. Montgomery, R.: A Tour of Subriemannian Geometries, their Geodesics and Applications, Mathematical Surveys and Monographs, vol. 91. American Mathematical Society, Providence, RI (2002)

    MATH  Google Scholar 

  25. Morimoto, T.: Geometric structures on filtered manifolds. Hokkaido Math. J. 22(3), 263–347 (1993). https://doi.org/10.14492/hokmj/1381413178

    Article  MathSciNet  MATH  Google Scholar 

  26. Norris, J.R.: A complete differential formalism for stochastic calculus in manifolds. In: Séminaire de Probabilités, XXVI, Lecture Notes in Mathematics, vol. 1526, pp. 189–209 . Springer, Berlin (1992). https://doi.org/10.1007/BFb0084322

  27. Øksendal, B.: Stochastic Differential Equations, 6th edn. Springer, Berlin (2003). https://doi.org/10.1007/978-3-642-14394-6

    Book  MATH  Google Scholar 

  28. Rogers, L.C.G., Williams, D.: Diffusions, Markov Processes, and Martingales Vol. 1: Foundations. Cambridge University Press, Cambridge (2000). https://doi.org/10.1017/CBO9781107590120

    Book  MATH  Google Scholar 

  29. Rogers, L.C.G., Williams, D.: Diffusions, Markov Processes, and Martingales. Vol. 2: Itô calculus. Cambridge University Press, Cambridge (2000). https://doi.org/10.1017/CBO9780511805141

    Book  MATH  Google Scholar 

  30. Sharpe, R.W.: Differential Geometry, Graduate Texts in Mathematics, vol. 166. Springer, New York (1997)

    Google Scholar 

  31. Vigneron, F.: A simple proof of the Hardy inequality on Carnot groups and for some hypoelliptic families of vector fields. To appear in the Tunisian Journal of Mathematics, http://arxiv.org/abs/1908.06728 (2019)

  32. Wise, D.K.: MacDowell-Mansouri gravity and Cartan geometry. Class. Quantum Gravity 27(15), 26 (2010). https://doi.org/10.1088/0264-9381/27/15/155010

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author was supported by the ANR project Quaco ANR-17-CE40-0007-01. The second author was supported by the Fondation Sciences Mathématiques de Paris.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beschastnyi, I., Habermann, K. & Medvedev, A. Cartan Connections for Stochastic Developments on sub-Riemannian Manifolds. J Geom Anal 32, 13 (2022). https://doi.org/10.1007/s12220-021-00743-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-021-00743-9

Keywords

Mathematics Subject Classification

Navigation