Skip to main content
Log in

(pq)-John Ellipsoids

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

As an extension of the classical John ellipsoid and the \(L_{p}\)-John ellipsoids due to Lutwak–Yang–Zhang, this paper studies (pq)-John ellipsoids. We consider an optimization problem about the (pq)-mixed volumes, whose solution is uniquely existed for all \(0<p\le q\). The solution allows us to introduce the concept of (pq)-John ellipsoids. As applications, we established an analog of the John’s inclusion theorem and Ball’s volume-ratio inequality for (pq)-John ellipsoids. Moreover, the connection between the isotropy of measures and the characterization of (pq)-John ellipsoids is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball, K.: Ellipsoids of maximal volume in convex bodies. Geom. Dedicata 41, 241–250 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ball, K.: Volumes ratios and a reverse isoperimetric inequality. J. Lond. Math. Soc. 44, 351–359 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barthe, F.: On a reverse form of the Brascamp-Lieb inequality. Invent. Math. 134, 335–361 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Börözky, K., Lutwak, E., Yang, D., Zhang, G.: The log-Brunn-Minkowski inequality. Adv. Math. 231, 1974–1997 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Börözky, K., Lutwak, E., Yang, D., Zhang, G.: The logarithmic-Minkowski problem. J. Am. Math. Soc. 26, 831–852 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Campi, S., Gronchi, P.: The \(L_{p}\)-Busemann-Petty centroid inequality. Adv. Math. 167, 128–141 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, F., Zhou, J., Yang, C.: On the reverse Orlicz Busemann-Petty centroid inequality. Adv. Appl. Math. 47, 820–828 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chou, K.S., Wang, X.J.: The \(L_{p}\)-Minkowski problem and the Minkowski problem in centroaffine geometry. Adv. Math. 205, 33–83 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fleury, B., Guédon, O., Paouris, G.A.: A stability result for mean width of \(L_{p}\)-centroid bodies. Adv. Math. 214, 865–877 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gardner, R.J.: Geometric Tomography. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  11. Gardner, R.J., Hug, D., Weil, W.: The Orlicz-Brunn-Minkowski theory: a general framework, additions, and inequalities. J. Differ. Geom. 97, 427–476 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Giannopoulos, A.A., Milman, V.: Extremal problems and isotropic position of convex bodies. Israel J. Math. 117, 29–60 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Giannopoulos, A.A., Papadimitrakis, M.: Isotropic surface area measures. Mathematika 46, 1–13 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gruber, P.M., Schuster, F.E.: An arithmetic proof of John’s ellipsoid theorem. Arch. Math. 85, 82–88 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gruber, P.M.: John and Loewner ellipsoids. Discrete Comput. Geom. 46, 776–788 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Haberl, C., Lutwak, E., Yang, D., Zhang, G.: The even Orlicz Minkowski problem. Adv. Math. 224, 2485–2510 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Haberl, C., Schuster, F.: General \(L_{p}\) affine isoperimetric inequalities. J. Differ. Geom. 83, 1–26 (2009)

    MATH  Google Scholar 

  18. He, B., Leng, G., Li, K.: Projection problems for symmetric polytopes. Adv. Math. 207, 73–90 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Huang, Y., Lutwak, E., Yang, D., Zhang, G.: Geometric measures in the dual Brunn-Minkowski theory and their associated Minkowski problems. Acta Math. 216, 325–388 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. John, F.: Extremum problems with inequalities as subsidiary conditions. In: Studies and Essays Presented to R. Courant on His 60th Birthday, pp. 187–204. Interscience Publishers, Inc., New York (1948)

  21. Klartag, B.: On John-type ellipsoids. In: Milman, V.D., Schechtman, G. (eds.) Geometric Aspects of Functional Analysis. Lecture Notes in Math, vol. 1850, pp. 149–158. Springer, Berlin (2004)

    Chapter  Google Scholar 

  22. Lewis, D.: Ellipsoids defined by Banach ideal norms. Mathematika 26, 18–29 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lin, Y.: Affine Orlicz Pólya-Szegö principle for log-concave functions. J. Funct. Anal. 273, 3295–3326 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ludwig, M.: Ellipsoids and matrix-valued valuations. Duke Math. J. 119, 159–188 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ludwig, M.: General affine surface areas. Adv. Math. 224, 2346–2360 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ludwig, M., Reitzner, M.: A classification of \({{\rm SL}}(n)\) invariant valuations. Ann. Math. 172, 1219–1267 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lutwak, E.: The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem. J. Differ. Geom. 38, 131–150 (1993)

    MathSciNet  MATH  Google Scholar 

  28. Lutwak, E.: The Brunn-Minkowski-Firey Theory. II. Adv. Math. 118, 244–294 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lutwak, E., Yang, D., Zhang, G.: \(L_{p}\) affine isoperimetric inequalities. J. Differ. Geom. 56, 111–132 (2000)

    MATH  Google Scholar 

  30. Lutwak, E., Yang, D., Zhang, G.: \(L_{p}\) John ellipsoids. Proc. Lond. Math. Soc. 90, 497–520 (2005)

    Article  MATH  Google Scholar 

  31. Lutwak, E., Yang, D., Zhang, G.: \(L_{p}\) dual curvature measures. Adv. Math. 329, 85–132 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lutwak, E., Yang, D., Zhang, G.: A new ellipsoid associated with convex bodies. Duke Math. J. 104, 375–390 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lutwak, E., Yang, D., Zhang, G.: A new affine invariant for polytopes and Schneider’s projection problem. Trans. Am. Math. Soc. 353, 1767–1779 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lutwak, E., Yang, D., Zhang, G.: On the \(L_{p}\)-Minkowski problem. Trans. Am. Math. Soc. 356, 4359–4370 (2004)

    Article  MATH  Google Scholar 

  35. Lutwak, E., Yang, D., Zhang, G.: Orlicz projection bodies. Adv. Math. 223, 220–242 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lutwak, E., Yang, D., Zhang, G.: Orlicz centroid bodies. J. Differ. Geom. 84, 365–387 (2010)

    MathSciNet  MATH  Google Scholar 

  37. Ma, T., Wang, W.: On the Analong of Shephard Problem for the \(L_{p}\)-projection Body. Math. Inequal. Appl. 14(1), 181–192 (2011)

    MathSciNet  Google Scholar 

  38. Ma, T.: The generalized \(L_{p}\)-Winternitz problem. J. Math. Inequal. 9(2), 597–614 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ma, T., Wang, W.: Dual Orlicz geominimal surface area. J. Ineq. Appl. (56), 1–13 (2016)

  40. Ma, T.: The minimal dual Orlicz surface area. Taiwan. J. Math. 20(2), 287–309 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ma, T.: On the Reverse Orlicz Blaschke-Santaló inequality. Mediterr. J. Math. 15(32), 1–11 (2018)

    MATH  Google Scholar 

  42. Milman, V.D., Pajor, A.: Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed \(n\)-dimensional space. In: Lindenstrauss, J., Milman, V.D. (eds.) Geometric Aspects of Functional Analysis, Lecture Notes in Math., vol. 1376, pp. 64–104. Springer, New York (1989)

    Chapter  Google Scholar 

  43. Petty, C.M.: Surface area of a convex body under affine transformations. Proc. Am. Math. Soc. 12, 824–828 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  44. Pisier, G.: The Volume of Convex Bodies and Banach Geometry. Cambridge University Press, Cambridge (1989)

    Book  MATH  Google Scholar 

  45. Ryabogin, D., Zvavitch, A.: The Fourier transform and Firey projections of convex bodies. Indiana Univ. Math. J. 53(3), 667–682 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  46. Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory. Encyclopedia Math. Appl., 2nd edn. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  47. Schütt, C., Werner, E.: Surface bodies and \(p\)-affine surface area. Adv. Math. 187, 98–145 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  48. Stancu, A.: The discrete planar \(L_{0}\)-Minkowski problem. Adv. Math. 167, 160–174 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  49. Wang, W., Ma, T.: Asymmetric \(L_{p}\)-difference bodies. Proc. Am. Math. Soc. 142(7), 2517–2527 (2014)

    Article  MATH  Google Scholar 

  50. Werner, E.M.: Rényi divergence and \(L_{p}\)-affine surface area for convex bodies. Adv. Math. 230, 1040–1059 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  51. Werner, E.M., Ye, D.: New \(L_{p}\) affine isoperimetric inequalities. Adv. Math. 218, 762–780 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  52. Wu, D.: Firey-Shephard problems for homogeneous measures. J. Math. Anal. Appl. 458, 43–57 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  53. Wu, D., Zhou, J.: The LYZ centroid conjecture for star bodies. Sci. China Math. 61(7), 1273–1286 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  54. Xi, D., Jin, H., Leng, G.: The Orlicz Brunn-Minkowski inequality. Adv. Math. 260, 350–374 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhu, G.: The Orlicz centroid inequality for star bodies. Adv. Appl. Math. 48, 432–445 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  56. Zhu, B., Zhou, J., Xu, W.: Dual Orlicz-Brunn-Minkowski theory. Adv. Math. 264, 700–725 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  57. Zhu, B., Hong, H., Ye, D.: The Orlicz-Petty bodies. Int. Math. Res. Not. 2018, 4356–4403 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  58. Zou, D., Xiong, G.: Orlicz-John ellipsoids. Adv. Math. 265, 132–168 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  59. Zou, D., Xiong, G.: Orlicz-Legendre ellipsoids. J Geom. Anal. 26, 1–29 (2014)

    MathSciNet  MATH  Google Scholar 

  60. Zou, D., Xiong, G.: The minimal Orlicz surface area. Adv. Appl. Math. 61, 25–45 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denghui Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundation of China (Grant No. 11561020) and Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2020JQ-236)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, T., Wu, D. & Feng, Y. (pq)-John Ellipsoids. J Geom Anal 31, 9597–9632 (2021). https://doi.org/10.1007/s12220-021-00621-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-021-00621-4

Keywords

AMS Subject Classification

Navigation