Skip to main content
Log in

The Dirichlet Problem on Almost Hermitian Manifolds

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We prove second-order a priori estimate on the boundary for the Dirichlet problem of a class of fully nonlinear equations on compact almost Hermitian manifolds with smooth boundary. As applications, we solve the Dirichlet problem of the Monge–Ampère type equation and of the degenerate Monge–Ampère equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angella, D.: Cohomological aspects in complex non-Kähler geometry. Lecture Notes in Mathematics, vol. 2095. Springer, Cham (2014)

    MATH  Google Scholar 

  2. Błocki, Z.: A gradient estimate in the Calabi–Yau theorem. Math. Ann. 344, 317–327 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Błocki, Z.: On geodesics in the space of Kähler metrics. In: Ji, L., Liu, K., Yau, S.-T. (eds.) Advances in Geometric Analysis. Advanced Lectures in Mathematics (ALM), vol. 21, pp. 3–19. International Press, Somerville (2012)

    MATH  Google Scholar 

  4. Boucksom, S.: Monge–Ampère equations on complex manifolds with boundary. In: Guedj, V. (ed.) Complex Monge–Ampère Equations and Geodesics in the Space of Kähler Metrics. Lecture Notes in Mathematics, vol. 2038, pp. 257–282. Springer, Berlin (2012)

    MATH  Google Scholar 

  5. Caffarelli, L., Kohn, J.J., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second order elliptic equations II: Complex Monge-Ampère, and uniformly elliptic, equations. Commun. Pure Appl. Math. 38(2), 209–252 (1985)

    MATH  Google Scholar 

  6. Caffarelli, L., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second order elliptic equations, III: functions of the eigenvalues of the Hessian. Acta Math. 155(1), 261–301 (1985)

    MathSciNet  MATH  Google Scholar 

  7. Chen, X.: The space of Kähler metrics. J. Differ. Geom. 56(2), 189–234 (2000)

    MATH  Google Scholar 

  8. Chen, Y.-Z., Wu, L.-C.: Second Order Elliptic Equations and Elliptic Systems. Translation of Mathematical MonographsTranslation of Mathematical MonographsTranslation of Mathematical Monographs, vol. 174. American Mathematical Society, New York (1998)

    Google Scholar 

  9. Chern, S.-S.: Characteristic classes of Hermitian manifolds. Ann. Math. 47, 85–121 (1946)

    MathSciNet  MATH  Google Scholar 

  10. Chou, K.-S., Wang, X.-J.: A variational theory of the Hessian equation. Commun. Pure Appl. Math. 54(9), 1029–1064 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Chu, J.: \(C^{1,1}\) regularity of degenerate complex Monge–Ampère equations and some applications. (2018). arXiv:1807.06201

  12. Chu, J., Tosatti, V., Weinkove, B.: On the \({C}^{1,1}\) regularity of geodesics in the space of Kähler metrics. Ann. Partial Differ. Equ. 3(2), 12 (2017)

    MATH  Google Scholar 

  13. Chu, J., Tosatti, V., Weinkove, B.: The Monge–Ampère equation for non-integrable almost complex structures. J. Eur. Math. Soc. 21(7), 1949–1984 (2019)

    MathSciNet  MATH  Google Scholar 

  14. Collins, T.C., Picard, S.: The Dirichlet problem for the \(k\)-Hessian equation on a complex manifold. (2019). arXiv:1909.00447

  15. Donaldson, S.K.: Holomorphic discs and the complex Monge–Ampère equation. J. Symplect. Geom. 1(2), 171–196 (2002)

    MATH  Google Scholar 

  16. Ecker, K., Huisken, G.: Immersed hypersurfaces with constant Weingarten curvature. Math. Ann. 283(2), 329–332 (1989)

    MathSciNet  MATH  Google Scholar 

  17. Ehresmann, C., Libermann, P.: Sur les structures presque hermitiennes isotopes. Compt. Rend. Acad. Sci. Ser. I(232), 1281–1283 (1951)

    MATH  Google Scholar 

  18. Evans, L.C.: Classical solutions of fully nonlinear, convex, second-order elliptic equations. Commun. Pure Appl. Math. 35(3), 333–363 (1982)

    MathSciNet  MATH  Google Scholar 

  19. Fu, J., Wang, Z., Damin, W.: Form-type Calabi-Yau equations. Math. Res. Lett. 17(5), 887–903 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Fu, J., Wang, Z., Damin, W.: Form-type Calabi-Yau equations on Kähler manifolds of nonnegative orthogonal bisectional curvature. Cal. Var. Partial Differ. Equ. 52(1–2), 327–344 (2015)

    MATH  Google Scholar 

  21. Gauduchon, P.: Hermitian connection and dirac operators. Bollet. Union. Mat. Ital. B 11, 257–288 (1997)

    MathSciNet  MATH  Google Scholar 

  22. Gerhardt, C.: Closed Weingarten hypersurfaces in Riemannian manifolds. J. Differ. Geom. 43(3), 612–641 (1996)

    MathSciNet  MATH  Google Scholar 

  23. Gilbarg, D., Sidney Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Classical in Mathematics. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  24. Guan, B.: The Dirichlet problem for complex Monge–Ampère equations and regularity of the pluri-complex Green function. Commun. Anal. Geom. 6(4), 687–703 (1998)

    MATH  Google Scholar 

  25. Guan, B: The Dirichlet problem for fully nonlinear elliptic equations on Riemannian manifolds. (2014). arXiv:1403.2133v2

  26. Guan, B.: Second order estimates and regularity for fully nonlinear elliptic equations on Riemannain manifolds. Duke Math. J. 163(8), 1491–1524 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Guan, B., Li, Q.: The Dirichlet problem for a complex Monge–Ampère type equation on Hermitian manifolds. Adv. Math. 246, 351–367 (2013)

    MathSciNet  MATH  Google Scholar 

  28. Hwang, S.-G.: Cauchy’s interlace theorem for eigenvalues of Hermitian matrices. Am. Math. Mon. 111(2), 157–159 (2004)

    MathSciNet  MATH  Google Scholar 

  29. Ivochkina, N.M.: The integral method of barrier functions and the Dirichlet problem for equations with operators of the Monge-Ampère type (Russian). Mat. Sbornik. Novaya Seriya 112(154), 193–206 (1980)

    MathSciNet  Google Scholar 

  30. Kobayashi, S.: Natural connections in almost complex manifolds. Contemp. Math. 332, 153–170 (2003)

    MathSciNet  MATH  Google Scholar 

  31. Krylov, V.N.: Boundedly nonhomogeneous elliptic and parabolic equations. Izvest. Akad. Nauk SSSR Seriya Mat. 46(3), 487–523 (1982)

    MATH  Google Scholar 

  32. Krylov, V.N.: Boundedly nonhomogeneous elliptic and parabolic equations in a domain. Izvest. Akad. Nauk SSSR Seriya Mat. 47(1), 75–108 (1983)

    Google Scholar 

  33. Li, S.-Y.: On the Dirichlet problems for symmetric function equations of the eigenvalues of the complex Hessian. Asian J. Math. 8(1), 87–106 (2004)

    MathSciNet  MATH  Google Scholar 

  34. Phong, D.H., Song, J., Sturm, J.: Complex Monge-Ampère equations. In: Cao, H.-D., Yau, S.-T. (eds.) Surveys in Differential Geometry, vol. 17, pp. 327–410. International Press, Boston (2012)

    Google Scholar 

  35. Phong, D.H., Sturm, J.: The Dirichlet problem for degenerate complex Monge–Ampère equations. Commun. Anal. Geom. 18(1), 145–170 (2010)

    MATH  Google Scholar 

  36. Popovici, D.: Aeppli cohomology classes associated with Gauduchon metrics on compact complex manifolds. Bull. Soc. Math. France 143, 7763–800 (2015)

    MathSciNet  MATH  Google Scholar 

  37. Richter, V.H.: Zur abschätzung von matrizennormen. Math. Nachrich. 18(1–6), 178–187 (1958)

    MATH  Google Scholar 

  38. Schouten, D., Jan Arnoldus, V.D.: Über unitäre geometrie. Math. Ann. 103, 319–346 (1930)

    MathSciNet  MATH  Google Scholar 

  39. Silvestre, L., Sirakov, B.: Boundary regularity for viscosity solutions of fully nonlinear elliptic equations. Commun. Partial Differ. Equ. 39(9), 1694–1717 (2014)

    MathSciNet  MATH  Google Scholar 

  40. Spruck, J.: Geometric aspects of the theory of fully nonlinear elliptic equations. In: Hoffman, D. (ed.) Global Theory of Minimal Surfaces Clay Mathematics Proceedings, vol. 2, pp. 283–309. The American Mathematical Society and Clay Mathematics Institute, New York (2005)

    MATH  Google Scholar 

  41. Székelyhidi, G.: Fully non-linear elliptic equations on compact Hermitian manifolds. J. Differ. Geom. 109(2), 337–378 (2018)

    MathSciNet  MATH  Google Scholar 

  42. Tosatti, V., Wang, Y., Weinkove, B., Yang, X.: \({C}^{2,\alpha }\) estimates for nonlinear elliptic equations in complex and almost complex geometry. Cal. Var. Partial Differ. Equ. 54(1), 431–453 (2015)

    MATH  Google Scholar 

  43. Tosatti, V., Weinkove, B.: The Monge–Ampère equation for \((n-1)\)-plurisubharmonic functions on a compact Kähler manifold. J. Am. Math. Soc. 30(2), 311–346 (2017)

    MATH  Google Scholar 

  44. Tosatti, V., Weinkove, B.: Hermitian metrics, \((n-1, n-1)\)-forms and Monge–Ampère equations. J. Reine Angew. Math. 2019(755), 67–101 (2019)

    MATH  Google Scholar 

  45. Tosatti, V., Weinkove, B., Yau, S.-T.: Taming symplectic forms and the Calabi–Yau equation. Proc. Lond. Math. Soc. 97(3), 401–424 (2008)

    MathSciNet  MATH  Google Scholar 

  46. Trudinger, N.S.: On the Dirichlet problem for Hessian equations. Acta Math. 175(2), 151–164 (1995)

    MathSciNet  MATH  Google Scholar 

  47. Wang, X.-J.: A class of fully nonlinear elliptic equations and related functionals. Indiana Univ. Math. J. 43(1), 25–54 (1994)

    MathSciNet  MATH  Google Scholar 

  48. Yau, S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation I. Commun. Pure Appl. Math. 31(3), 339–411 (1978)

    MATH  Google Scholar 

  49. Yuan, R.: Regularity of fully non-linear elliptic equations on Hermitian manifolds. II. (2020). arXiv:2001.09238

  50. Zheng, T.: An almost complex Chern–Ricci flow. J. Geom. Anal. 28(3), 2129–2165 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first named author would like to thank his advisor Professor Gang Tian for helpful suggestions, constant encouragement, and support. The second named author thanks Professor Jean-Pierre Demailly, Valentino Tosatti, and Ben Weinkove for invaluable directions. The authors are also grateful to the anonymous referees and the editor for their careful reading and helpful suggestions which greatly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Chang Li: Supported by the China post-doctoral Grant No. BX20200356. Tao Zheng: Supported by Beijing Institute of Technology Research Fund Program for Young Scholars.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zheng, T. The Dirichlet Problem on Almost Hermitian Manifolds. J Geom Anal 31, 6452–6480 (2021). https://doi.org/10.1007/s12220-020-00540-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-020-00540-w

Keywords

Mathematics Subject Classification

Navigation