Skip to main content
Log in

Self-contracted Curves in \({\mathrm {CAT}}(0)\)-Spaces and Their Rectifiability

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We investigate self-contracted curves, arising as (discrete or continuous-time) gradient curves of quasi-convex functions, and their rectifiability (finiteness of the lengths) in Euclidean spaces, Hadamard manifolds, and \({\mathrm {CAT}}(0)\)-spaces. In the Hadamard case, we give a quantitative refinement of the original proof of the rectifiability of bounded self-contracted curves (in general Riemannian manifolds) by Daniilidis et al. Our argument leads us to a generalization to \({\mathrm {CAT}}(0)\)-spaces satisfying several uniform estimates on their local structures. Upon these conditions, we show the rectifiability of bounded self-contracted curves in trees, books, and \({\mathrm {CAT}}(0)\)-simplicial complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abramenko, P., Brown, K.S.: Buildings. Theory and Applications. Springer, New York (2008)

    MATH  Google Scholar 

  2. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Birkhäuser Verlag, Basel (2005)

    MATH  Google Scholar 

  3. Bačák, M.: Convex Analysis and Optimization in Hadamard Spaces. Walter de Gruyter & Co., Berlin (2014)

    MATH  Google Scholar 

  4. Bridson, M.R., Haefliger, A.: Metric Spaces of Non-positive Curvature. Springer, Berlin (1999)

    Book  Google Scholar 

  5. Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry. American Mathematical Society, Providence (2001)

    Book  Google Scholar 

  6. Chalopin, J., Chepoi, V., Hirai, H., Osajda, D.: Weakly modular graphs and nonpositive curvature. Mem. Am. Math. Soc. (to appear). Available at arXiv:1409.3892

  7. Chavel, I.: Riemannian Geometry. A Modern Introduction, Second edn. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  8. Daniilidis, A., David, G., Durand-Cartagena, E., Lemenant, A.: Rectifiability of self-contracted curves in the Euclidean space and applications. J. Geom. Anal. 25, 1211–1239 (2015)

    Article  MathSciNet  Google Scholar 

  9. Daniilidis, A., Deville, R., Durand-Cartagena, E., Rifford, L.: Self-contracted curves in Riemannian manifolds. J. Math. Anal. Appl. 457, 1333–1352 (2018)

    Article  MathSciNet  Google Scholar 

  10. Daniilidis, A., Ley, O., Sabourau, S.: Asymptotic behaviour of self-contracted planar curves and gradient orbits of convex functions. J. Math. Pures Appl. (9) 94, 183–199 (2010)

    Article  MathSciNet  Google Scholar 

  11. Erbar, M., Kuwada, K., Sturm, K.-T.: On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces. Invent. Math. 201, 993–1071 (2015)

    Article  MathSciNet  Google Scholar 

  12. Giannotti, C., Spiro, A.: Steepest descent curves of convex functions on surfaces of constant curvature. Israel J. Math. 191, 279–306 (2012)

    Article  MathSciNet  Google Scholar 

  13. Hamada, M., Hirai, H.: Maximum vanishing subspace problem, CAT(0)-space relaxation, and block-triangularization of partitioned matrix. Preprint (2017). Available at arXiv:1705.02060

  14. Jost, J.: Convex functionals and generalized harmonic maps into spaces of nonpositive curvature. Comment. Math. Helv. 70, 659–673 (1995)

    Article  MathSciNet  Google Scholar 

  15. Jost, J.: Nonpositive Curvature: Geometric and Analytic Aspects. Birkhäuser Verlag, Basel (1997)

    Book  Google Scholar 

  16. Kleiner, B.: The local structure of length spaces with curvature bounded above. Math. Z. 231, 409–456 (1999)

    Article  MathSciNet  Google Scholar 

  17. Lemenant, A.: Rectifiability of non Euclidean planar self-contracted curves. Conflu. Math. 8, 23–38 (2016)

    Article  MathSciNet  Google Scholar 

  18. Longinetti, M., Manselli, P., Venturi, A.: On steepest descent curves for quasi convex families in ${\mathbb{R}}^n$. Math. Nachr. 288, 420–442 (2015)

    Article  MathSciNet  Google Scholar 

  19. Lytchak, A.: Open map theorem for metric spaces. St. Petersburg Math. J. 17, 477–491 (2006)

    Article  MathSciNet  Google Scholar 

  20. Lytchak, A., Nagano, K.: Geodesically complete spaces with an upper curvature bound. Preprint (2018). Available at arXiv:1804.05189

  21. Lytchak, A., Nagano, K.: Topological regularity of spaces with an upper curvature bound. Preprint (2018). Available at arXiv:1809.06183

  22. Manselli, P., Pucci, C.: Uniqueness results for evolutes and self-evolvents. (Italian) Boll. Un. Mat. Ital. A (7) 5, 373–379 (1991)

    MathSciNet  MATH  Google Scholar 

  23. Manselli, P., Pucci, C.: Maximum length of steepest descent curves for quasi-convex functions. Geom. Dedicata 38, 211–227 (1991)

    Article  MathSciNet  Google Scholar 

  24. Mayer, U.F.: Gradient flows on nonpositively curved metric spaces and harmonic maps. Commun. Anal. Geom. 6, 199–253 (1998)

    Article  MathSciNet  Google Scholar 

  25. Ohta, S.: Gradient flows on Wasserstein spaces over compact Alexandrov spaces. Am. J. Math. 131, 475–516 (2009)

    Article  MathSciNet  Google Scholar 

  26. Ohta, S.: $(K, N)$-convexity and the curvature-dimension condition for negative $N$. J. Geom. Anal. 26, 2067–2096 (2016)

    Article  MathSciNet  Google Scholar 

  27. Ohta, S., Pálfia, M.: Discrete-time gradient flows and law of large numbers in Alexandrov spaces. Calc. Var. Partial Differ. Equ. 54, 1591–1610 (2015)

    Article  MathSciNet  Google Scholar 

  28. Ohta, S., Pálfia, M.: Gradient flows and a Trotter–Kato formula of semi-convex functions on CAT(1)-spaces. Am. J. Math. 139, 937–965 (2017)

    Article  MathSciNet  Google Scholar 

  29. Ohta, S., Sturm, K.-T.: Non-contraction of heat flow on Minkowski spaces. Arch. Ration. Mech. Anal. 204, 917–944 (2012)

    Article  MathSciNet  Google Scholar 

  30. Perel’man, G., Petrunin, A.: Quasigeodesics and gradient curves in Alexandrov spaces. Unpublished preprint. Available at http://www.math.psu.edu/petrunin/

  31. Rešetnjak, J.G.: Non-expansive maps in a space of curvature no greater than $K$. (Russian) Sibirsk. Mat. Ž. 9 (1968), 918–927. (English translation in Siberian Math. J. 9 (1968), 683–687)

  32. Savaré, G.: Gradient flows and diffusion semigroups in metric spaces under lower curvature bounds. C. R. Math. Acad. Sci. Paris 345, 151–154 (2007)

    Article  MathSciNet  Google Scholar 

  33. Stepanov, E., Teplitskaya, Y.: Self-contracted curves have finite length. J. Lond. Math. Soc. 96, 455–481 (2017)

    Article  MathSciNet  Google Scholar 

  34. Sturm, K.-T.: Probability measures on metric spaces of nonpositive curvature. Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002), Contemp. Math., vol. 338, pp. 357–390. Amer. Math. Soc., Providence (2003)

  35. Zolotov, V.: Sets with small angles in self-contracted curves. Preprint (2018). Available at arXiv:1804.00234

Download references

Acknowledgements

I would like to thank Miklós Pálfia for stimulating discussions. The author was supported in part by JSPS Grant-in-Aid for Scientific Research (KAKENHI) 15K04844.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-ichi Ohta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohta, Si. Self-contracted Curves in \({\mathrm {CAT}}(0)\)-Spaces and Their Rectifiability. J Geom Anal 30, 936–967 (2020). https://doi.org/10.1007/s12220-018-00126-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-018-00126-7

Keywords

Mathematics Subject Classification

Navigation