Skip to main content
Log in

Deforming the Scalar Curvature of the De Sitter–Schwarzschild Space

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Building upon the work of Brendle, Marques, and Neves on the construction of counterexamples to Min-Oo’s conjecture, we exhibit deformations of the de Sitter–Schwarzschild space of dimension \(n\ge 3\) satisfying the dominant energy condition and agreeing with the standard metric along the event and cosmological horizons, which remain totally geodesic. Our results hold for generalized Kottler–de Sitter–Schwarzschild spaces whose cross-sections are compact rank one symmetric spaces and indicate that there exists no analogue of the rigidity statement of the Penrose inequality in the case of positive cosmological constant. As an application, we construct solutions of Einstein field equations satisfying the dominant energy condition and being asymptotic to (or agreeing with) the de Sitter–Schwarzschild space–time both at the event horizon and at spatial infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrozio, L.C.: On perturbations of the Anti-de Sitter–Schwarzschild spaces of positive mass. Commun. Math. Phys. 337(2), 767–783 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andersson, L., Dahl, M.: Scalar curvature rigidity for asymptotically locally hyperbolic manifolds. Ann. Glob. Anal. Geom. 16(1), 1–27 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andersson, L., Cai, M., Galloway, G.J.: Rigidity and positivity of mass for asymptotically hyperbolic manifolds. Ann. Henri Poincaré 9(1), 1–33 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barbosa, E., Mirandola, H., Vitorio, F.: Rigidity theorems of conformal class on compact manifolds with boundary. J. Math. Anal. Appl. 437(1), 629–637 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bartnik, R.: The mass of an asymptotically flat manifold. Commun. Pure Appl. Math. 39(5), 661–693 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Besse, A.L.: Manifolds all of whose geodesics are closed. With appendices by Epstein, D.B.A., Bourguignon, J.-P., Brard-Bergery, L., Berger, M., Kazdan, J.L. Ergebnisse der Mathematik und ihrer Grenzgebiete 93. Springer, Berlin (1978)

  7. Bonar, D.D., Khoury Jr., M.: Real Infinite Series. Mathematical Association of America, Washington, DC (2006)

    MATH  Google Scholar 

  8. Bourguignon, J.-P., Karcher, H.: Curvature operators: pinching estimates and geometric examples. Ann. Sci. Cole Norm. Sup. (4) 11(1), 71–92 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bray, H.L.: Proof of the Riemannian Penrose inequality using the positive mass theorem. J. Differ. Geom. 59(2), 177–267 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bray, H.L., Lee, D.: On the Riemannian Penrose inequality in dimensions less than eight. Duke Math. J. 148(1), 81–106 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brendle, S.: Rigidity Phenomena Involving Scalar Curvature. Surveys in Differential Geometry, vol. XVII, pp. 179–202. International Press, Boston (2012)

  12. Brendle, S., Chodosh, O.: A volume comparison theorem for asymptotically hyperbolic manifolds. Commun. Math. Phys. 332(2), 839–846 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Brendle, S., Marques, F.C., Neves, A.: Deformations of the hemisphere that increase the scalar curvature. Invent. Math. 185(1), 175–197 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Choquet-Bruhat, Y.: General Relativity and the Einstein Equations. Oxford University Press, Oxford (2009)

    MATH  Google Scholar 

  15. Chruściel, P.T., Herzlich, M.: The mass of asymptotically hyperbolic Riemannian manifolds. Pac. J. Math. 212(2), 231–264 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chruściel, P.T., Pollack, D.: Singular Yamabe metrics and initial data with exactly Kottler–Schwarzschild–de Sitter ends. Ann. Henri Poincare 9(4), 639–654 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chruściel, P.T., Pacard, F., Pollack, D.: Singular Yamabe metrics and initial data with exactly Kotler–Schwarzschild–de Sitter ends II. Math. Res. Lett. 16(1), 157164 (2009)

    MATH  Google Scholar 

  18. Corvino, J., Pollack, D.: Scalar Curvature and the Einstein Constraint Equations. Surveys in Geometric Analysis and Relativity, vol. 20, pp. 145–188. Advanced Lectures in Mathematics (ALM). International Press, Somerville (2011)

  19. Delay, E.: Localized gluing of Riemannian metrics in interpolating their scalar curvature. Differ. Geom. Appl. 29(3), 433–439 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. de Lima, L.L., Girão, F.: A rigidity result for the graph case of the Penrose inequality. arXiv:1205.1132

  21. de Lima, L.L., Girão, F.: An Alexandrov–Fenchel-type inequality in hyperbolic space with an application to a Penrose inequality. Ann. Henri Poincaré 17(4), 979–1002 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fischer, A.E., Marsden, J.E.: Deformations of the scalar curvature. Duke Math. J. 42(3), 519–547 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ge, Y., Wang, G., Wu, J., Xia, C.: A Penrose inequality for graphs over Kottler space. Calc. Var. Partial Differ. Equ. 52(3–4), 755–782 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gromov, M., Lawson Jr., H.B.: The classification of simply connected manifolds of positive scalar curvature. Ann. Math. (2) 111(3), 423–434 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hang, F., Wang, X.: Rigidity and non-rigidity results on the sphere. Commun. Anal. Geom. 14, 91–106 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Huang, L.-H., Wu, D.: The equality case of the Penrose inequality for asymptotically flat graphs. Trans. Am. Math. Soc. 367(1), 31–47 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Huisken, G., Ilmanen, T.: The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differ. Geom. 59(3), 353–437 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Karcher, H.: Riemannian Comparison Constructions. Global Differential Geometry. MAA Studies in Mathematics, 27th edn, pp. 170–222. Mathematical Association of America, Washington, DC (1989)

    Google Scholar 

  29. Lam, M.-K.G.: The Graphs Cases of the Riemannian Positive Mass and Penrose Inequalities in All Dimensions. arXiv:1010.4256

  30. Lee, D., Neves, A.: The Penrose inequality for asymptotically locally hyperbolic spaces with nonpositive mass. Commun. Math. Phys. 339(2), 327–352 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Maximo, D., Nunes, I.: Hawking mass and local rigidity of minimal two-spheres in three-manifolds. Commun. Anal. Geom. 21(2), 409–432 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Min-Oo, M.: Scalar curvature rigidity of asymptotically hyperbolic spin manifolds. Math. Ann. 285(4), 527–539 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  33. Qing, J., Yuan, W.: On scalar curvature rigidity of vacuum static spaces. Math. Ann. 365(3–4), 1257–1277 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Schoen, R., Yau, S.-T.: On the proof of the positive mass conjecture in general relativity. Commun. Math. Phys. 65(1), 45–76 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, X.: The mass of asymptotically hyperbolic manifolds. J. Differ. Geom. 57(2), 273–299 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. Witten, E.: A new proof of the positive energy theorem. Commun. Math. Phys. 80(3), 381–402 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yuan, W.: On Brown–York mass and compactly conformal deformations of scalar curvature. arXiv:1505.04311

Download references

Acknowledgements

The authors thank L. Ambrozio, F. Marques, and I. Nunes for valuable discussions. Also, they would like to thank an anonymous referee for suggestions which helped substantially improve the presentation. L. L. de Lima and J. F. Montenegro were partially supported by CNPq/Brazil research grants. C. T. Cruz was supported by a CNPq Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levi Lopes de Lima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz, C.T., de Lima, L.L. & Montenegro, J.F. Deforming the Scalar Curvature of the De Sitter–Schwarzschild Space. J Geom Anal 28, 473–491 (2018). https://doi.org/10.1007/s12220-017-9829-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-017-9829-9

Keywords

Mathematics Subject Classification

Navigation