Skip to main content
Log in

Asymptotically Extrinsic Tamed Submanifolds

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We study, from the extrinsic point of view, the structure at infinity of open submanifolds, \(\varphi :M^m \hookrightarrow \mathbb {M}^{n}(\kappa )\) isometrically immersed in the real space forms of constant sectional curvature \(\kappa \le 0\). We shall use the decay of the second fundamental form of the so-called tamed immersions to obtain a description at infinity of the submanifold in the line of the structural results in Greene et al. (Int Math Res Not 1994:364–377, 1994) and Petrunin and Tuschmann (Math Ann 321:775–788, 2001) and an estimation from below of the number of its ends in terms of the volume growth of a special class of extrinsic domains, the extrinsic balls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abresch, U.: Lower curvature bounds, toponogov’s theorem, and bounded topology. Ann. Sci. École Norm. Sup. 18(4), 651–670 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ballman, W., Gromov, M., Schroeder, V.: Manifolds of nonpositive Curvature, progress in mathematics, 61. Birkhäuser Boston, Inc., Boston, MA. vi+263 pp. ISBN: 0-8176-3181-X (1985)

  3. Bessa, G.P., Costa, M.S.: On submanifolds with tamed second fundamental form. Glasg. Math. J. 51(3), 669–680 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bessa, G.P., Jorge, L., Montenegro, J.F.: Complete submanifolds of \(\mathbb{R}^n\) with finite topology. Comm. Anal. Geom. 15(4), 725–732 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brendle, S., Schoen, R.: Manifolds with \( 1/4\)-pinched curvature are space forms. J. Am. Math. Soc. 22(1), 287–307 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chavel, I.: Eigenvalues in Riemannian geometry. Including a chapter by Burton Randol. With an appendix by Jozef Dodziuk., Pure and applied mathematics 115. Academic Press Inc., Orlando, FL. xiv+362 pp. ISBN: 0-12-170640-0 (1984)

  7. Chavel, I.: Riemannian geometry. A modern introduction. Second edition. Cambridge studies in advanced mathematics, p. 98. Cambridge, Cambridge University Press (2006)

  8. Drees, G.: Asymptotically flat manifolds of non-negative curvature. Differ. Geom. Appl. 4(1), 77–90 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. do Carmo, M.P.: Riemannian geometry. Translated from the second Portuguese edition by Francis Flaherty. Mathematics: theory & applications. Birkhäuser Boston Inc., MA. xiv+300 pp. ISBN: 0-8176-3490-8 (1992)

  10. do Carmo, M.P., Dajczer, M.: Rotation hypersurfaces in spaces of constant curvature. Trans. Am. Math. Soc. 277(2), 685–709 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gimeno, V.: On the fundamental tone of minimal submanifolds with controlled extrinsic curvature. Potential Anal. 40(3), 267–278 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gimeno, V., Palmer, V.: Volume growth, number of ends, and the topology of a complete submanifold. J. Geom. Anal. 24(3), 1346–1367 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gimeno, V., Palmer, V.: Volume growth of submanifolds and the Cheeger isoperimetric constant. Proc. Am. Math. Soc. 141(10), 3639–3650 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Greene, R.E., Petersen, P., Zhu, S.: Riemannian manifolds of faster-than-quadratic curvature decay. Int. Math. Res. Not. 1994, 363–377 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Grigor’ yan, A.: Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Am. Math. Soc. 36(2), 135–249 (1999)

    Article  MathSciNet  Google Scholar 

  16. Gromov, M., Lawson, H.B.: Spin and scalar curvature in the presence of a fundamental group I. Ann. of Math. 111(2), 209–230 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. Greene, R., Wu, H.: Integrals of subharmonic functions on manifolds of non-negative curvature. Invent. Math. 27, 265–298 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  18. Greene, R., Wu, H.: Gap theorems for non-compact Riemannian manifolds. Duke Math. J. 49(3), 731–756 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jost, J.: Riemannian geometry and geometric analysis. Universitext, 3rd edn. Springer, Berlin (2002). xiv+532 pp. ISBN: 3-540-42627-2 53-02

  20. Kasue, A.: A compactification of a manifold with asymptotically non-negative curvature. Ann. Sci. École Norm. Sup. 21(4), 593–622 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kasue, A., Sugahara, K.: Gap theorems for certain submanifolds of Euclidean spaces and hyperbolic space forms. Osaka J. Math. 24(4), 679–704 (1987)

    MathSciNet  MATH  Google Scholar 

  22. Pessoa Lima, B., Mari, L., Fabio Montenegro, J., Vieira, F.B.: Density and spectrum of minimal submanifolds in space forms. Preprint arXiv:1407.5280v3 (2014)

  23. Milnor, J.: Morse theory. Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51 Princeton University Press, Princeton, N.J., pp. vi+153 (1963)

  24. de Oliveira, G.: Filho compactification of minimal submanifolds of Hyperbolic space. Comm. Anal. Geom. 1(1), 1–29 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Palmer, V.: On deciding whether a submanifold is parabolic of hyperbolic using its mean curvature , Simon Stevin Transactions on Geometry, vol 1. pp. 131–159, Simon Stevin Institute for Geometry, Tilburg, The Netherlands (2010)

  26. Petrunin, A., Tuschmann, W.: Asymptotical flatness and cone structure at infinity. Math. Ann. 321(4), 775–788 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sakai, T.: Riemannian geometry. Translated from the 1992 Japanese original by the author. Translations of Mathematical Monographs, 149. American Mathematical Society, Providence, RI. xiv+358 pp. ISBN: 0-8218-0284-4 (1996)

Download references

Acknowledgements

Vicent Gimeno: Work partially supported by the Research Program of University Jaume I Project UJI-B2016-07, and DGI -MINECO Grant (FEDER) MTM2013-48371-C2-2-P. Vicente Palmer: Work partially supported by the Research Program of University Jaume I Project UJI-B2016-07, DGI -MINECO Grant (FEDER) MTM2013-48371-C2-2-P, and Generalitat Valenciana Grant PrometeoII/2014/064. G. Pacelli Bessa: Work partially supported by CNPq- Brazil grant # 301581/2013-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente Palmer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bessa, G.P., Gimeno, V. & Palmer, V. Asymptotically Extrinsic Tamed Submanifolds. J Geom Anal 28, 448–472 (2018). https://doi.org/10.1007/s12220-017-9828-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-017-9828-x

Keywords

Mathematics Subject Classification

Navigation