Skip to main content
Log in

A Theorem à la Fatou for the Square Root of Poisson Kernel in \(\delta \)-Hyperbolic Spaces and Decay of Matrix Coefficients of Boundary Representations

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this note, we prove a theorem à la Fatou for the square root of Poisson Kernel in the context of quasi-convex cocompact discrete groups of isometries of \(\delta \)-hyperbolic spaces. As a corollary we show that some matrix coefficients of boundary representations cannot satisfy the weak inequality of Harish-Chandra. Nevertheless, such matrix coefficients satisfy an inequality which can be viewed as a particular case of the inequality coming from property RD for boundary representations. The inequality established in this paper is based on a uniform bound which appears in the proof of the irreducibility of boundary representations. Moreover this uniform bound can be used to prove that the Harish-Chandra’s Schwartz space associated with some discrete groups of isometries of \(\delta \)-hyperbolic spaces carries a natural structure of a convolution algebra. Then in the context of CAT(−1) spaces we show how our elementary techniques enable us to apply an equidistribution theorem of Roblin to obtain information about the decay of matrix coefficient of boundary representations associated with continuous functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarez, S.: A Fatou theorem for \(F\)-harmonic functions. arXiv:1407.0679

  2. Axler, S., Bourdon, P., Rameye, W.: Graduate Texts in Mathematics. Harmonic Function Theory, vol. 137, 2nd edn. Springer, New York (2001)

    Google Scholar 

  3. Bader, U., Muchnik, R.: Boundary unitary representations, irreducibility and rigidity. J. Mod. Dyn. 5(1), 49–69 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourdon, M.: Structure conforme et flot géodésique d’un CAT(-1)-espace, L’enseignement mathématique (1995)

  5. Boyer, A.: Equidistribution, ergodicity and irreducibility in CAT(-1) spaces. arXiv:1412.8229

  6. Boyer, A.: Quasi-regular representations and property RD. arXiv:1305.0480

  7. Bridson, M.R., Haefliger, A.: Metric spaces of non-positive curvature. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319. Springer, Berlin (1999)

  8. Burger, M., Mozes, S.: \({\rm CAT}\)(\(-1\))-spaces, divergence groups and their commensurators. J. Am. Math. Soc. 9(1), 57–93 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Connell, C., Muchnik, R.: Harmonicity of quasiconformal measures and Poisson boundaries of hyperbolic spaces. Geom. Funct. Anal. 17(3), 707–769 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Coornaert, M.: Mesures de Patterson-Sullivan sur le bord d’un espace hyperbolique au sens de Gromov. (French) [Patterson-Sullivan measures on the boundary of a hyperbolic space in the sense of Gromov]. Pac. J. Math. 159(2), 241–270 (1993)

    Article  MATH  Google Scholar 

  11. Gangolli, R., Varadarajan, V.S.: Harmonic Analysis of Spherical Functions on Real Reductive Groups. Springer, New York (1988)

    Book  MATH  Google Scholar 

  12. Garncarek, L.: Boundary representations of hyperbolic groups (2014). arXiv:1404.0903

  13. Ghys, E., de la Harpe, P.: Panorama. (French) Sur les groupes hyperboliques d’après Mikhael Gromov (Bern, 1988), Progress in Mathematics, vol. 83, pp. 1–25. Birkhäuser, Boston, (1990)

  14. Gromov, M.: Hyperbolic Groups. Essays in Group Theory (Mathematical Sciences Research Institute Publications), vol. 8, pp. 75–263. Springer, New York (1987)

  15. Haagerup, U.: An example of a nonnuclear \(C^*\)-algebra which has the metric approximation property. Invent. Math. 50(3): 279–293 (1978/79)

  16. Jolissaint, P.: Rapidly decreasing functions in reduced \(C^*\)-algebras of groups. Trans. Am. Math. Soc. 317(1), 167–196 (1990)

    MathSciNet  MATH  Google Scholar 

  17. Jorgenson, J., Lang, S.: The Heat Kernel and Theta Inversion on \({\rm SL}_{2}({mathbb{C}})\). Springer Monographs in Mathematics. Springer, New York (2008)

    Google Scholar 

  18. Lafforgue, V.: \(K\)-théorie bivariante pour les algèbres de Banach et conjecture de Baum-Connes. (French) [Bivariant \(K\)-theory for Banach algebras and the Baum-Connes conjecture]. Invent. Math. 149(1), 1–95 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Michelson, H.-L.: Fatou theorems for eigenfunctions of the invariant differential operators on symmetric spaces. Trans. Am. Math. Soc. 177, 257–274 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  20. Patterson, S.-J.: The limit set of a Fuchsian group. Acta Math. 136, 241–273 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  21. Roblin, T.: Ergodicité et équidistribution en courbure négative. Mémoires de la SMF 95 (2003)

  22. Roblin, T.: Un théorème de Fatou pour les densités conformes avec applications aux revêtements galoisiens en courbure négative. (French) [A Fatou theorem for conformal densities with applications to Galois coverings in negative curvature]. Israel J. Math. 147, 333–357 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rönning, J.-O.: Convergence results for the square root of the Poisson kernel. Math. Scand. 81(2), 219–235 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rönning, J.-O.: On convergence for the square root of the Poisson kernel in symmetric spaces of rank \(1\). Studia Math. 125(3), 219–229 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rudin, W.: Analyse réelle et complexe. (French) [Real and complex analysis] Translated from the first English edition by N. Dhombres and F. Hoffman. Third printing. Masson, Paris (1980)

  26. Sjögren, P.: Une remarque sur la convergence des fonctions propres du laplacien à valeur propre critique. (French) [A remark on the convergence of the eigenfunctions of the Laplacian to a critical eigenvalue]. Théorie du potentiel (Orsay, 1983), pp. 544–548, Lecture Notes in Mathematics, 1096, Springer, Berlin (1984)

  27. Sjögren, P.: Convergence for the square root of the Poisson kernel. Pac. J. Math. 131(2), 361–391 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sullivan, D.: The density at infinity of a discrete group of hyperbolic motions. Publications mathématiques de l’IHES 50, 171–202 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wallach, N.-R.: Real Reductive Groups. I. Pure and Applied Mathematics, vol. 132. Academic Press, Boston (1988)

    Google Scholar 

Download references

Acknowledgements

I would like to thank Nigel Higson who suggested that I investigate the structure of convolution algebra of Harish-Chandra’s Schwartz space of discrete groups. I would like also to thank Uri Bader and Amos Nevo for valuable discussions. And I am grateful to Felix Pogorzelski and Dustin Mayeda for their remarks and comments on this note. This work is supported by ERC Grant 306706.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrien Boyer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyer, A. A Theorem à la Fatou for the Square Root of Poisson Kernel in \(\delta \)-Hyperbolic Spaces and Decay of Matrix Coefficients of Boundary Representations. J Geom Anal 28, 284–316 (2018). https://doi.org/10.1007/s12220-017-9820-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-017-9820-5

Keywords

Mathematics Subject Classification

Navigation