Skip to main content
Log in

Brown–York Mass and Compactly Supported Conformal Deformations of Scalar Curvature

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this article, we find a connection between Brown–York mass and the first Dirichlet eigenvalue of a Schrödinger type operator. In particular, we prove a local positive mass type theorem for metrics conformal to the background one with suitable presumptions. As applications, we investigate compactly supported conformal deformations which either increase or decrease scalar curvature. We find local conformal rigidity phenomena occur in both cases for small domains and as for manifolds with nonpositive scalar curvature it is even more rigid in particular. On the other hand, such deformations exist for closed or a type of non-compact manifolds with positive scalar curvature. These results together give an answer to a question that arises naturally in (Corvino in Commun Math Phys 214:137–189, 2000; Lohkamp in Math Ann 313:385–407, 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersson, L., Dahl, M.: Scalar curvature rigidity for asymptotically locally hyperbolic manifolds. Ann. Global Anal. Geom. 16, 1–27 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barbosa, E., Mirandola, H., Vitorio, F.: Rigidity theorems of conformal class on compact manifolds with boundary. arXiv:1411.6851 (2014)

  3. Brendle, S.: Rigidity phenomena involving scalar curvature, arXiv:1008.3097 (2010)

  4. Brendle, S., Marques, F.C.: Scalar curvature rigidity of geodesic balls in \(S^n\). J. Differ. Geom. 88, 379–394 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Brendle, S., Marques, F.C., Neves, A.: Deformations of the hemisphere that increase scalar curvature. Invent. Math. 185, 175–197 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brown, J., York, J.: Quasilocal energy in general relativity, mathematical aspects of classical field theory (Seattle, WA, 1991). Contemporary Mathematics, pp. 129–142. American Mathematical Society, Providence, RI (1992)

    Google Scholar 

  7. Brown, J., York, J.: Quasilocal energy and conserved charges derived from the gravitational action. Phys. Rev. D 47, 1407–1419 (1993)

    Article  MathSciNet  Google Scholar 

  8. Chavel, I.: Eigenvalues in Riemannian Geometry, Pure and Applied Mathematics. Academic Press, Orlando (1984)

    MATH  Google Scholar 

  9. Chen, W., Li, C.: Methods on Nonlinear Elliptic Equations. AIMS, Springfield (2010)

    MATH  Google Scholar 

  10. Cheng, S.Y., Yau, S.T.: Differential equations on Riemannian manifolds and geometric applications. Commun. Pure Appl. Math. 28, 333–354 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  11. Corvino, J.: Scalar curvature deformation and a gluing construction for the Einstein constraint equations. Commun. Math. Phys. 214, 137–189 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cox, G., Miao, P., Tam, L.F.: Remarks on a scalar curvature rigidity theorem of Brendle and Marques. Asian J. Math. 17, 457–470 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cruz, C., Lima, L., Montenegro, J.: Deforming the scalar curvature of the de Sitter–Schwarzschild space. arXiv:1411.1600 (2014)

  14. Escobar, J.: Uniqueness and non-uniqueness of metrics with prescribed scalar and mean curvature on compact manifolds with boundary. J. Funct. Anal. 202, 424–442 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fischer, A., Marsden, J.: Deformations of the scalar curvature. Duke Math J 42(3), 519–547 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hang, F., Wang, X.: Rigidity and non-rigidity results on the sphere. Commun. Anal. Geom. 14, 91–106 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Karp, L., Pinsky, M.: The first eigenvalue of a small geodesic ball in a Riemannian manifold. Bull. Sci. Math. 111, 222–239 (1987)

    MathSciNet  MATH  Google Scholar 

  18. Lohkamp, J.: Scalar curvature and hammocks. Math. Ann. 313, 385–407 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Miao, P.: Positive mass theorem on manifolds admitting corners along a hypersurface. Adv. Theor. Math. Phys. 6, 1163–1182 (2002)

    Article  MathSciNet  Google Scholar 

  20. Min-Oo, M.: Scalar curvature rigidity of asymptotically hyperbolic spin manifolds. Math. Ann. 285, 527–539 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Min-Oo, M.: Scalar curvature rigidity of certain symmetric spaces, Geometry, topology, and dynamics (Montreal, 1995). Proc. Amer. Math. Soc. 15, 127–137 (1998)

    MathSciNet  MATH  Google Scholar 

  22. Qing, J., Yuan, W.: A note on static spaces and related problems. J. Geom. Phys 74, 18–27 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Qing, J., Yuan, W.: On scalar curvature rigidity of vacuum static spaces. Math. Ann. doi:10.1007/s00208-015-1302-0

  24. Schoen, R., Yau, S.T.: On the proof of positive mass conjecture in General Relativity. Commun. Math. Phys. 65, 45–76 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schoen, R., Yau, S.T.: Proof of positive mass theorem II. Commun. Math. Phys. 79, 231–260 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schoen, R., Yau, S.T.: Lectures on Differential Geometry. International Press, Boston, MA (1994)

    MATH  Google Scholar 

  27. Shi, Y., Tam, L.F.: Positive mass theorem and the boundary behaviors of compact manifolds with nonnegative scalar curvature. J. Differ. Geom. 62, 79–125 (2002)

    MathSciNet  MATH  Google Scholar 

  28. Toponogov, V.: Evaluation of the length of a closed geodesic on a convex surface. Dokl. Akad. Nauk. SSSR 124, 282–284 (1959)

    MathSciNet  MATH  Google Scholar 

  29. Witten, E.: A new proof of the positive mass theorem. Commun. Math. Phys. 80, 381–402 (1981)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The author would like to express his deepest appreciation to Professor Jie Qing for his inspiring discussions and constant encouragement. Also, he would like to thank the referee for his or her patient work and valuable suggestions. This work is support by NSF Grant DMS-1005295 and DMS-1303543.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, W. Brown–York Mass and Compactly Supported Conformal Deformations of Scalar Curvature. J Geom Anal 27, 797–816 (2017). https://doi.org/10.1007/s12220-016-9698-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-016-9698-7

Keywords

Mathematics Subject Classification

Navigation