Skip to main content
Log in

On 4-Reflective Complex Analytic Planar Billiards

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

The famous conjecture of Ivrii (Funct Anal Appl 14(2):98–106, 1980) says that in every billiard with infinitely-smooth boundary in a Euclidean space the set of periodic orbits has measure zero. In the present paper we study its complex analytic version for quadrilateral orbits in two dimensions, with reflections from holomorphic curves. We present the complete classification of 4-reflective complex analytic counterexamples: billiards formed by four holomorphic curves in the projective plane that have open set of quadrilateral orbits. This extends the author’s previous result Glutsyuk (Moscow Math J 14(2):239–289, 2014) classifying 4-reflective complex planar algebraic counterexamples. We provide applications to real planar billiards: classification of 4-reflective germs of real planar \(C^4\)-smooth pseudo-billiards; solutions of Tabachnikov’s Commuting Billiard Conjecture and the 4-reflective case of Plakhov’s Invisibility Conjecture (both in two dimensions; the boundary is required to be piecewise \(C^4\)-smooth). We provide a survey and a small technical result concerning higher number of complex reflections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Everywhere in the paper by cusp we mean the singularity of an arbitrary irreducible singular germ of analytic curve, not necessarily the one given by equation \(x^2=y^3+\dots \) in appropriate coordinates.

  2. Real triangular spirals were introduced in [10, p. 320], where a real version of Proposition 2.19 was proved. Our proof of Proposition 2.19 is analogous to arguments from loc. cit.

  3. Recall that a mapping \(V\rightarrow W\) of complex manifolds (or analytic sets in complex manifolds) is meromorphic, if it is well-defined and holomorphic on an open and dense subset in V, and the closure of its graph is an analytic subset in \(V\times W\), see Convention 2.31. It is well-known that if W is compact and V is irreducible, then the set of indeterminacies of every meromorphic mapping \(V\rightarrow W\) is contained in the union of the singular set of V (which has codimension at least two in V, if V is normal) and an analytic subset in V of codimension at least two. A mapping is bimeromorphic, if it is meromorphic together with its inverse.

  4. Everywhere below for an analytic set M by \(M_{reg}\) (\(M_{sing}\)) we denote the set of its smooth (respectively, singular) points.

  5. Everywhere below by analytic variety we mean an analytic subset in a complex manifold.

  6. The edge lengths denoted by \(L_j\) in [10] are denoted here by \(l_j\).

References

  1. Aleksenko, A., Plakhov, A.: Bodies of zero resistance and bodies invisible in one direction. Nonlinearity 22, 1247–1258 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baryshnikov, Y., Zharnitsky, V.: Billiards and nonholonomic distributions. J. Math. Sci. 128, 2706–2710 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cartan, É.: Les Systèmes Différentiels Extérieurs et Leurs Applications Géométriques, Actualités Sci. Ind., No. 994, Hermann et Cie., Paris (1945)

  4. Cerveau, D.: Feuilletages holomorphes de codimension 1. Réduction des singularités en petites dimensions et applications. Dynamique et Géométrie Complexes. Panor. Synth., vol. 8, pp. 11–47 (1999)

  5. Chirka, E.M.: Complex Analytic Sets. Nauka, Moscow (1985)

    MATH  Google Scholar 

  6. Dragovic, V., Radnovic, M.: Ellipsoidal billiards in pseudo-Euclidean spaces and relativistic quadrics. Adv. Math. 231, 1173–1201 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Glutsyuk, A.: On quadrilateral orbits in complex algebraic planar billiards. Moscow Math. J. 14(2), 239–289 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Glutsyuk, A.: On odd-periodic orbits in complex planar billiards. J. Dyn. Control Syst. 20, 293–306 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Glutsyuk, A.A., Kudryashov, Yu.G.: On quadrilateral orbits in planar billiards. Doklady Math. 83(3), 371–373 (2011)

  10. Glutsyuk, A.A., Kudryashov, Yu.G.: No planar billiard possesses an open set of quadrilateral trajectories. J. Modern Dyn. 6(3), 287–326 (2012)

  11. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley, New York (1978)

    MATH  Google Scholar 

  12. Hajto, Z.: Stratification properties of constructible sets. In: Campillo Lopez, A., Narváez Macarro, L. (eds.) Algebraic Geometry and Singularities. Progress in Mathematics, vol. 134, pp. 187–196 (1996)

  13. Isidori, A.: Nonlinear Control Systems: An Introduction. Lecture Notes in Control and Information Sciences, vol. 72. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  14. Ivrii, V.Ya.: The second term of the spectral asymptotics for a Laplace–Beltrami operator on manifolds with boundary. Funct. Anal. Appl. 14(2), 98–106 (1980)

  15. Khesin, B., Tabachnikov, S.: Pseudo-Riemannian geodesics and billiards. Adv. Math. 221, 1364–1396 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kuranishi, M.: On É. Cartan’s prolongation theorem of exterior differential systems. Am. J. Math. 79, 1–47 (1957)

  17. Plakhov, A.: Exterior Billiards. Systems with Impacts Outside Bounded Domains. Springer, New York (2012)

    MATH  Google Scholar 

  18. Plakhov, A., Roshchina, V.: Invisibility in billiards. Nonlinearity 24, 847–854 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Plakhov, A., Roshchina, V.: Fractal bodies invisible in 2 and 3 directions. Discret. Contin. Dyn. Syst. 33(4), 1615–1631 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Plakhov, A.: Plane sets invisible in finitely many directions, preprint arXiv:1510.06079

  21. Rashevskii, P.K.: Geometrical Theory of Partial Differential Equations. OGIZ, Moscow (1947)

    Google Scholar 

  22. Rychlik, M.R.: Periodic points of the billiard ball map in a convex domain. J. Diff. Geom. 30, 191–205 (1989)

    MathSciNet  MATH  Google Scholar 

  23. Stojanov, L.: Note on the periodic points of the billiard. J. Differ. Geom. 34, 835–837 (1991)

    MathSciNet  MATH  Google Scholar 

  24. Tabachnikov, S.: Geometry and Billiards. American Mathematical Society, Providence (2005)

    Book  MATH  Google Scholar 

  25. Tabachnikov, S.: Commuting dual billiard maps. Geom. Dedic. 53, 57–68 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Viro, O.: Defining relations for reflections. I, preprint http://arxiv.org/pdf/1405.1460v1

  27. Vorobets, Ya.B.: On the measure of the set of periodic points of a billiard. Math. Notes 55, 455–460 (1994)

  28. Weyl, H.: Über die asymptotische Verteilung der Eigenwerte, pp. 110–117. Mathematisch-Physikalische Klasse, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen (1911)

    MATH  Google Scholar 

  29. Wojtkowski, M.P.: Two applications of Jacobi fields to the billiard ball problem. J. Differ. Geom. 40(1), 155–164 (1994)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

I am grateful to Yu.S. Ilyashenko, Yu.G. Kudryashov, A.Yu. Plakhov and S.L. Tabachnikov for attracting my attention to Ivrii’s Conjecture, invisibility and Commuting Billiard Conjecture. I wish to thank Yu.G.Kudryashov, to whom this paper owes much: some of his arguments from our joint paper [10] were used here in a crucial way. I am grateful to them and to E.M. Chirka, E. Ghys, A.L. Gorodentsev, Z. Hajto, B. Sevennec, V.V. Shevchishin, J.-C. Sikorav, M.S. Verbitsky, O.Ya. Viro, V. Zharnitsky for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Glutsyuk.

Additional information

Research supported by part by RFBR Grants 10-01-00739-a, 13-01-00969-a, 16-01-00748, 16-01-00766 and NTsNIL_a 10-01-93115 (RFBR-CNRS grant), by ANR grant ANR-13-JS01-0010.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glutsyuk, A. On 4-Reflective Complex Analytic Planar Billiards. J Geom Anal 27, 183–238 (2017). https://doi.org/10.1007/s12220-016-9679-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-016-9679-x

Keywords

Mathematics Subject Classification

Navigation