Skip to main content
Log in

A Detailed Proof of a Theorem of Aubin

  • Original Research
  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper we give a detailed proof of a theorem of Aubin, namely (J Funct Anal 240:269–289, 2006, Théorème 5).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, T.: Sur quelques problèmes de courbure scalaire. J. Funct. Anal. 240, 269–289 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aubin, T.: Solution complète de la \({C}^0\) compacité de l’ensemble des solutions de l’équation de Yamabe. J. Funct. Anal. 244, 579–589 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aubin, T.: On the \({C}^0\) compactness of the set of the solutions of the Yamabe equation. Bull. Sci. Math. 133(2), 186–189 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brendle, S.: Blow-up phenomena for the Yamabe equation. J. Am. Math. Soc. 21(4), 951–979 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brendle, S., Marques, F.C.: Blow-up phenomena for the Yamabe equation II. J. Diff. Geom. 81(2), 225–250 (2009)

    MATH  MathSciNet  Google Scholar 

  6. Hebey, E., Vaugon, M.: Le problème de Yamabe équivariant. Bull. Sci. Math. 117, 241–286 (1993)

    MATH  MathSciNet  Google Scholar 

  7. Lee, J.M., Parker, T.: The Yamabe problem. Bull. Am. Math. Soc. 17, 37–91 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  8. Madani, F.: Equivariant Yamabe problem and Hebey–Vaugon conjecture. J. Func. Anal. 258, 241–254 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Madani, F.: Hebey–Vaugon conjecture II. C. R. Acad. Sci. Paris Ser I 350, 849–852 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid Madani.

Appendix

Appendix

1.1 Proof of the Equalities \(\mathcal {A}_k=\mathcal {B}_k\)

In the following computation, the components of the Ricci tensor \({\mathrm {Ric}}\) are denoted by \(R_{ij}\). Here we give some useful formulas for the computation of the \(\mathcal {A}_k\)’s:

$$\begin{aligned} \nabla _i R_{ij}&= \frac{1}{2}\nabla _j \mathrm {scal\,}\end{aligned}$$
(28)
$$\begin{aligned} \nabla _a R_{iabj}&= -\nabla _b R_{ij}+\nabla _j R_{bi} (\text {by}\, 2^{\mathrm{nd}}\, \text {Bianchi})\end{aligned}$$
(29)
$$\begin{aligned} \nabla _b R_{iabj}&= -\nabla _a R_{ij}+\nabla _i R_{aj}\end{aligned}$$
(30)
$$\begin{aligned} \Delta R_{iabj}&= \nabla _{bi} R_{aj}+\nabla _{aj} R_{bi}-\nabla _{ij} R_{ab}-\nabla _{ab} R_{ij}. (\text {by}\, 2^{\mathrm{nd}}\, \text {Bianchi})\end{aligned}$$
(31)
$$\begin{aligned} \mathcal {A}&:= \nabla _c R_{iabj}\cdot \nabla _c R_{ibaj}=-\nabla _c R_{iabj}\cdot (\nabla _c R_{baij}+\nabla _c R_{aibj})\nonumber \\&=|\nabla {\mathrm {Riem}}|^2-\mathcal {A},\quad \text {yielding } \mathcal {A}=\frac{1}{2}|\nabla {\mathrm {Riem}}|^2.\end{aligned}$$
(32)
$$\begin{aligned} \mathcal {B}&:= \nabla _c R_{iabj}\cdot \nabla _b R_{iacj}=-\nabla _c R_{iabj}\cdot (\nabla _j R_{iabc}+\nabla _c R_{iajb})\nonumber \\&= |\nabla {\mathrm {Riem}}|^2-\mathcal {B},\quad \text {yielding } \mathcal {B}=\frac{1}{2}|\nabla {\mathrm {Riem}}|^2. \end{aligned}$$
(33)
$$\begin{aligned} \mathcal {A}_1&:= \mathcal {T}^\omega .\\ \mathcal {A}_{2}&:=-{\mathrm {Tr\,}}\mathrm {Sym}\nabla _{I'c} R_{ij}\nabla _{J'b} R_{ibcj}\overset{(29)}{=}{\mathrm {Tr\,}}\mathrm {Sym}\nabla _{I'c}R_{ij}\nabla _{J'}(\nabla _c R_{ij}-\nabla _j R_{ci})\\&=\mathcal {T}^{\omega -1}-~\mathcal {M}^{\omega -1}.\\ \mathcal {A}_{3}&:= -{\mathrm {Tr\,}}\mathrm {Sym}\nabla _I R_{ij}\nabla _{J''bc} R_{ibcj}\overset{(30)}{=} -{\mathrm {Tr\,}}\mathrm {Sym}\nabla _I R_{ij}\nabla _{J''b}(-\nabla _b R_{ij}+\nabla _i R_{bj})\\&=~\mathcal {T}^{\omega -2}_{1}.\\ \mathcal {A}_{4}&=-{\mathrm {Tr\,}}\mathrm {Sym}\nabla _{I'b}R_{ij}\nabla _{J'c} R_{ibcj} \overset{(30)}{=}{\mathrm {Tr\,}}\mathrm {Sym}\nabla _{I'b} R_{ij}\nabla _{J'} (\nabla _b R_{ij}-\nabla _i R_{bj})=\mathcal {A}_{2}.\\ \mathcal {A}_{6}&:= \mathcal {R}^\omega .\\ \mathcal {A}_{7}&:= {\mathrm {Tr\,}}{\mathrm {Sym}}\nabla _{I'b}R_{iabj}\nabla _{J'c}R_{iacj} \overset{(30)}{=}2(\mathcal {T}^{\omega -1}-\mathcal {M}^{\omega -1}).\\ \mathcal {A}_{8}&:= {\mathrm {Tr\,}}{\mathrm {Sym}}\nabla _{I''cb}R_{iabj}\nabla _{J}R_{iacj} \overset{(30)}{=}2\mathcal {B}_5.\\ \mathcal {A}_{9}&:= {\mathrm {Tr\,}}{\mathrm {Sym}}\nabla _{I'c}R_{iabj}\nabla _{J'b}R_{iacj} \overset{(33)}{=}\frac{1}{2}\mathcal {R}^{\omega -1}.\\ \mathcal {A}_{10}&:= {\mathrm {Tr\,}}{\mathrm {Sym}}\nabla _{I}R_{iabj}\nabla _{J}R_{ibaj} \overset{(32)}{=}\frac{1}{2}\mathcal {R}^\omega .\\ \mathcal {A}_{11}&:= {\mathrm {Tr\,}}{\mathrm {Sym}}\nabla _{I'b}R_{iabj}\nabla _{J'c}R_{icaj} \overset{(30)}{=} \mathcal {B}_2.\\ \mathcal {A}_{12}&:= {\mathrm {Tr\,}}{\mathrm {Sym}}\nabla _{I''bc}R_{iabj}\nabla _{J}R_{icaj} \overset{(30)}{=} \mathcal {B}_5.\\ \mathcal {A}_{13}&:= {\mathrm {Tr\,}}{\mathrm {Sym}}\nabla _{I'c}R_{iabj}\nabla _{J'b}R_{icaj} ={\mathrm {Tr\,}}{\mathrm {Sym}}\nabla _{I'}(\nabla _aR_{icbj}-\nabla _iR_{acbj}) \nabla _{J'b}R_{icaj}\\&=\mathcal {A}_9-\mathcal {A}_{13}. \hbox { Hence } \mathcal {A}_{13}=\frac{1}{4}\mathcal {R}^{\omega -1}.\\ \mathcal {A}_{14}&{:=}{\mathrm {Tr\,}}{\mathrm {Sym}}\nabla _{I}R_{iabj}\nabla _{J''bc}R_{icaj}\overset{(29)}{=}\mathcal {B}_5.\\ \mathcal {A}_{15}&{:=}{\mathrm {Tr\,}}{\mathrm {Sym}}\nabla _{I}R_{iabj}\nabla _{J''ac}R_{icbj} \overset{(29)}{=}2\mathcal {B}_5.\\ \mathcal {A}_{16}&{:=}{\mathrm {Tr\,}}{\mathrm {Sym}}\nabla _{I'c}R_{iabj}\nabla _{J'a}R_{icbj} \overset{(33)}{=}\frac{1}{2}\mathcal {R}^{\omega -1}.\\ \mathcal {A}_{17}&{:=}{\mathrm {Tr\,}}{\mathrm {Sym}}\nabla _{I'a}R_{iabj}\nabla _{J'c}R_{icbj} \overset{(29)}{=}2(\mathcal {T}^{\omega -1}-\mathcal {M}^{\omega -1}).\\ \mathcal {A}_{18}&{:=}{\mathrm {Tr\,}}\mathrm {Sym}\nabla _{I'''ab} R_{iabj} \nabla _{J''cd} R_{icdj} \overset{(29)}{=}{\mathrm {Tr\,}}\mathrm {Sym}\nabla _{I''}\Delta R_{ij} \nabla _{J''}\Delta R_{ij}=\mathcal {T}^{\omega -2}_{1,1}.\\ \mathcal {A}_{20}&{:=}{\mathrm {Tr\,}}\mathrm {Sym}\nabla _{I'''abc}R_{iabj}\nabla _{J'd} R_{icdj} \overset{(30)}{=}{\mathrm {Tr\,}}\mathrm {Sym}\nabla _{I'''c}\Delta R_{ij} \nabla _{J'} (\nabla _c R_{ij}-\nabla _i R_{cj})\\&= \mathcal {T}^{\omega -3}_{1}-\mathcal {M}^{\omega -3}_{1}.\\ \mathcal {A}_{21}&{:=}{\mathrm {Tr\,}}\mathrm {Sym}\nabla _{I'''dab} R_{iabj}\nabla _{J'c} R_{icdj} \overset{(29)}{=}{\mathrm {Tr\,}}\mathrm {Sym}\nabla _{I'''d}\Delta R_{ij} \nabla _{J'} (\nabla _d R_{ij}-\nabla _j R_{di})\\&=~\mathcal {T}^{\omega -3}_{1}-\mathcal {M}^{\omega -3}_{1}.\\ \mathcal {A}_{23}&{:=}\nabla _{I'd} \Delta R_{iabj} \nabla _{J'''abc}R_{icdj}\overset{(29)}{=} -\nabla _{I'd} R_{iabj} \nabla _{J'''dab} R_{ij}\overset{(30)}{=}\mathcal {A}_{22}.\\ \mathcal {A}_{24}&{:=}{\mathrm {Tr\,}}\mathrm {Sym}\nabla _{I''ab} R_{icdj}\nabla _{J''cd}R_{iabj}\!=\!{\mathrm {Tr\,}}\mathrm {Sym}\nabla _{I''ac}R_{ibdj} \nabla _{J''cd}R_{iabj}\overset{(33)}{=} \frac{1}{2}\mathcal {R}^{\omega -2}.\\ \mathcal {A}_{25}&{:=}{\mathrm {Tr\,}}\mathrm {Sym}\nabla _{I''da} R_{iabj}\nabla _{J''bc}R_{icdj} \overset{(29)}{=}\mathcal {T}^{\omega -2}-\mathcal {M}^{\omega -2}.\\ \mathcal {A}_{26}&{:=} {\mathrm {Tr\,}}\mathrm {Sym}\nabla _{I''ca} R_{iabj} \nabla _{J''bd} R_{icdj} \overset{(29), ({\mathrm{A-3}})}{=}\mathcal {T}^{\omega -2}-2\mathcal {M}^{\omega -2}+\mathcal {N}^{\omega -2}.\\ \mathcal {A}_{27}&{:=}{\mathrm {Tr\,}}\mathrm {Sym}\nabla _{I''cb} R_{iabj} \nabla _{J''ad} R_{icdj} \overset{(30)}{=} \mathcal {T}^{\omega -2}-\mathcal {M}^{\omega -2}. \end{aligned}$$

For the remaining terms \(\mathcal {A}_{5}\), \(\mathcal {A}_{19}\) and \(\mathcal {A}_{22}\), the computation is done by induction, by introducing the following sequence \(\mathcal {U}_{\omega -\beta } {:=} -{\mathrm {Tr\,}}{\mathrm {Sym}}\nabla _{I_\beta bc}\nabla _{K_\beta }{\mathrm {Ric}}_{ij}\nabla _{J_\beta }\nabla _{K_\beta } R_{ibcj}\) for \(1\le \beta \le \omega -2\) and \(\mathcal {U}_\omega {:=}\mathcal {A}_5\), where \(K_\beta \), \(I_\beta \) and \(J_\beta \) are multi-indices sets of cardinalities \(\beta \), \(\omega -\beta -2\) and \(\omega -\beta \) respectively. The induction formula is given by

$$\begin{aligned}&\mathcal {U}_{\omega -\beta }=2(\omega -\beta -1)(\omega -\beta -2)\mathcal {U}_{\omega -\beta -1}\\&\quad -2(\omega -\beta -1)^2{\mathrm {Tr\,}}{\mathrm {Sym}}\nabla _{I_\beta bc} \nabla _{K_\beta }{\mathrm {Ric}}_{ij}\nabla _{J_{\beta -2}}\nabla _{K_{\beta }}\Delta R_{ibcj}. \end{aligned}$$

Using (31), we have \({\mathrm {Tr\,}}{\mathrm {Sym}}\nabla _{I_\beta bc}\nabla _{K_\beta }{\mathrm {Ric}}_{ij}\nabla _{J_{\beta -2}}\nabla _{K_{\beta }}\Delta R_{ibcj}=\mathcal {T}^{\omega -\beta -2}-2\mathcal {M}^{\omega -\beta -2}+\mathcal {N}^{\omega -\beta -2}\). By induction on \(\beta \), we prove that

$$\begin{aligned} \mathcal {A}_{5}&=\mathcal {U}_\omega =(\omega -1)!(\omega -2)!\sum _{k=0}^{\omega -2}2^{\omega -k-1} \frac{k+1}{(k!)^2}(\mathcal {T}^{k}-2\mathcal {M}^{k}+ \mathcal {N}^{k})\nonumber \\&\overset{(16),(37)}{=}\sum _{\ell =0}^{[\frac{\omega -2}{2}]} e^{\omega }_\ell (\mathcal {T}_\ell -2\mathcal {M}_\ell + \mathcal {N}_\ell ). \end{aligned}$$
(34)

We have \(\mathcal {A}_{22}{:=} {\mathrm {Tr\,}}\mathrm {Sym}\nabla _{I'c}R_{iabj} \nabla _{J'''abd}R_{icdj}\overset{(30)}{=} -{\mathrm {Tr\,}}\mathrm {Sym}\nabla _{I'c} R_{iabj} \nabla _{J'''abc} R_{ij}\). By contracting an index in \(\mathcal {A}_5\), which corresponds to a covariant derivative of the Riemann tensor and using the last equality, we obtain \(\mathcal {A}_5=2(\omega -1)^2\mathcal {B}_{26}+2(\omega -1)(\omega -2)\mathcal {A}_{22}\). Therefore, by (34), we obtain \(\mathcal {A}_{22} =\sum _{\ell =0}^{[\frac{\omega -3}{2}]}e^{\omega -1}_\ell (\mathcal {T}_\ell -2\mathcal {M}_\ell + \mathcal {N}_\ell )\).

We have \(\mathcal {A}_{19}{:=}{\mathrm {Tr\,}}\mathrm {Sym}\nabla _{I''''abcd} R_{iabj}\nabla _J R_{icdj}=-{\mathrm {Tr\,}}\mathrm {Sym}\nabla _{I''''cd}\Delta R_{ij} \nabla _J R_{icdj}\). By contracting an index in \(\mathcal {A}_5\), which corresponds to a covariant derivative of the Ricci tensor and using the last equality, we obtain \(\mathcal {A}_{5}=2(\omega -1)(\omega -3)\mathcal {A}_{19}+2\omega (\omega -1)\mathcal {A}_{22}\). We deduce that

$$\begin{aligned} \mathcal {A}_{19}= \sum _{\ell =0}^{[\frac{\omega -2}{2}]}\frac{\ell e^{\omega }_\ell }{(\omega -1)(\omega -2)(\omega -3)}(\mathcal {T}_\ell -2\mathcal {M}_\ell + \mathcal {N}_\ell ). \end{aligned}$$

1.2 Combinatorics Formulas

The following identities hold for any nonnegative integer \(\omega \)

$$\begin{aligned} (\omega +2)\sum _{k=\omega }^{2\omega }(k+1) \left( {\begin{array}{c}k\\ \omega \end{array}}\right)&= (\omega +3)^2C(\omega ),\end{aligned}$$
(35)
$$\begin{aligned} (\omega +2)\sum _{k=\omega }^{2\omega -1}(k+1)(2\omega -k)\left( {\begin{array}{c}k\\ \omega \end{array}}\right)&= \omega (\omega +3)C(\omega ), \end{aligned}$$
(36)

where \(C(\omega )=(\omega +1)^2(\omega +2)^2(2\omega +2)![(\omega +3)!]^{-2}\).

Proof

Identities (35) and (36) can be written in a simpler way which can be viewed as special cases (for \(n=2\omega \)) of the following combinatorial identities:

$$\begin{aligned} \sum _{k=\omega }^{n-1}\left( {\begin{array}{c}k\\ \omega \end{array}}\right) =\left( {\begin{array}{c}n\\ \omega +1\end{array}}\right) ,\quad \sum _{k=\omega }^{n-2}(n-k-1)\left( {\begin{array}{c}k\\ \omega \end{array}}\right) =\left( {\begin{array}{c}n\\ \omega +2\end{array}}\right) , \end{aligned}$$
(37)

for all integers \(n\ge \omega \), respectively \(n\ge \omega +2\).

These identities follow by counting in a different way the number of combinations. The first identity is obtained by counting the number of subsets with \((\omega +1)\) elements out of \(n\) elements in the following way: the sets are separated with respect to their largest element. For each \(\omega \le k\le n-1\), \(\left( {\begin{array}{c}k\\ \omega \end{array}}\right) \) counts the subsets of \((\omega +1)\)-elements whose largest element is \(k+1\).

Similarly, the second identity follows by counting \(\left( {\begin{array}{c}n\\ \omega +2\end{array}}\right) \) as follows: the sets are separated with respect to their second largest element. For each \(\omega \le k\le n-2\), \((n-k-1)\left( {\begin{array}{c}k\\ \omega \end{array}}\right) \) is the number of subsets with \(\omega +2\) elements whose second largest element is \(k+1\). Indeed, if the second largest element is \(k+1\), the others \(\omega \) elements of the set which are smaller must form a subset of \(\omega +k\) and the largest element may be any of the remaining \(n-k-1\) elements. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madani, F. A Detailed Proof of a Theorem of Aubin. J Geom Anal 26, 231–251 (2016). https://doi.org/10.1007/s12220-014-9547-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-014-9547-5

Keywords

Mathematics Subject Classification

Navigation