Skip to main content
Log in

Evaporation Process of Sessile Liquid Droplet and Layer in Steady State

  • Orignal Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

The ethanol liquid droplet with constant contour and liquid layer with constant height in steady-state contained in the heated substrate under evaporation have been experimentally investigated utilizing infrared thermography and volume control technique. The heat and mass transfer and thermal flow patterns at the gas–liquid interface during droplet and layer evaporation are analyzed through their heat flux curves and interface temperature fields. Experimental results reveal that the steady-state evaporation of liquid droplet and layer at surface emerges after the evaporation rate is equal to replenishment rate by continuous liquid refilling and temperature filed becomes uniform. For evaporating droplets, there are two main stages during the evaporation evolution: unstable evaporation with decreasing heat flux and steady evaporation with constant heat flux. In the steady stage, the interface temperature gradually becomes uniform, and convection cells at the interface disappear. For evaporating layer, three main stages are present: first, the formation and splitting of Marangoni convection cells, then the hydrothermal wave propagating from "source" to "sink", and finally the stable flow stage without vortex cells. The results also show that the direction of the temperature gradient at evaporating droplet interface is opposite under different substrate materials (Aluminum and PTFE). The heat flux density of the evaporating droplet on Aluminum substrate is larger than that on PTFE, resulting in a higher evaporation rate. These new findings help to gain a better understanding of the coupling mechanism between phase change and thermal convection inside evaporating liquid droplets and layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Brutin, D., Sobac, B., Rigollet, F., Niliot, C.: Infrared visualization of thermal motion inside a sessile drop deposited onto a heated surface. Exp. Thermal Fluid Sci. 35(3), 521–530 (2011)

    Article  Google Scholar 

  • Brutin, D., Zhu, Z., Rahli, O., Xie, J., Liu, Q., Lounès, T.: Evaporation of ethanol drops on a heated substrate under microgravity conditions. Microgravity Sci. Technol. 22(3), 387–395 (2010)

    Article  Google Scholar 

  • Brutin, D., Starov, V.: Recent advances in droplet wetting and evaporation. Chem. Soc. Rev. 47, 558–585 (2018)

    Article  Google Scholar 

  • Carle, F., Sobac, B., Brutin, D.: Hydrothermal waves on ethanol droplet evaporating under terrestrial and reduced gravity levels. J. Fluid Mech. 712, 614–623 (2012)

    Article  Google Scholar 

  • Cerisier, P., Rahal, S., Rivier, N.: Topological correlations in bénard-marangoni convective structures. Phys. Rev. E 54(5), 5086–5094 (1996)

    Article  Google Scholar 

  • Chen, X., Zhu, Z., Liu, Q., Wang, X.: Thermodynamic behaviors of macroscopic liquid droplet evaporation from heated substrates. Microgravity Sci. Technol. 27(5), 353–360 (2015)

    Article  Google Scholar 

  • Chen, X., Wang, X., Chen, P., Liu, Q.: Thermal effects of substrate on Marangoni flow in droplet evaporation: response surface and sensitivity analysis. Int J Heat and Mass Trans. 113, 354–365 (2017)

    Article  Google Scholar 

  • Cummings, J., Lowengrub, J., Sumpter, B., et al.: Modeling solvent evaporation during thin film formation in phase separating polymer mixture. Soft Matter 14(10), 1833–1846 (2018)

    Article  Google Scholar 

  • Daviaud, F., Vince, J.: Traveling waves in a fluid layer subjected to a horizontal temperature gradient. Phys. Rev. E 48(6), 4432–4436 (1993)

    Article  Google Scholar 

  • Ezersky, A., Garcimartín, A., Mancini, H., Pérez-García, C.: Spatiotemporal structure of hydrothermal waves in marangoni convection. Phys. Rev. E 48(6), 4414–4422 (1993)

    Article  Google Scholar 

  • Ghasemi, H., Ward, C.: Mechanism of sessile water droplet evaporation: kapitza resistance at the solid–liquid interface. J. Phys. Chem. C 115(43), 21311–21319 (2011)

    Article  Google Scholar 

  • Karapetsas, G., Matar, O., Valluri, P., Sefiane, K.: Convective rolls and hydrothermal waves in evaporating sessile drops. Langmuir 28(31), 11433–11439 (2012)

    Article  Google Scholar 

  • Kavehpour, P., Ovryn, B., Mckinley, G.: Evaporatively-driven marangoni instabilities of volatile liquid films spreading on thermally conductive substrates. Colloids Surf. A 206(1–3), 409–423 (2002)

    Article  Google Scholar 

  • Koschmieder, E., Prahl, S.: Surface-tension-driven benard convection in small containers. J. Fluid Mech 215, 571–583 (1990)

    Article  Google Scholar 

  • Liu, W., Chen, P., Ouazzani, J., Liu, Q.: Thermocapillary flow transition in an evaporating liquid layer in a heated cylindrical cell. Int J Heat and Mass Trans. 153, 119587 (2020)

    Article  Google Scholar 

  • Riley, R., Neitzel, G.: Instability of thermocapillary–buoyancy convection in shallow layers. part 1. characterization of steady and oscillatory instabilities. J. Fluid Mech. 359, 143–164 (1998)

  • Ristenpart, W., Kim, P., Domingues, C., Wan, J., Stone, H.: Influence of substrate conductivity on circulation reversal in evaporating drops. Phys. Rev. Lett. 99(23), 234502 (2007)

    Article  Google Scholar 

  • Schatz, M., Neitzel, G.: Experiments on thermocapillary instabilities. Annu. Rev. Fluid Mech. 33(1), 93–127 (2001)

    Article  Google Scholar 

  • Schatz, M., Vanhook, S., Mccormick, W., Swift, J., Swinney, H.: Onset of surface-tension-driven bénard convection. Phys. Rev. Lett. 75(10), 1938–1941 (1995)

    Article  Google Scholar 

  • Sefiane, K., Fukatani, Y., Takata, Y., Kim, J.: Thermal patterns and hydrothermal waves (htws) in volatile drops. Langmuir 29(31), 9750–9760 (2013)

    Article  Google Scholar 

  • Sefiane, K., Karapetsas, G., Saenz, P., Valluri, P., Matar, O.: Numerical study of the evaporation of sessile drops: formation of hydrothermal waves. Comput. Mater. Sci. 103(2), 1–7 (2015)

    Google Scholar 

  • Sefiane, K., Moffat, J., Matar, O., Craster, R.: Self-excited hydrothermal waves in evaporating sessile drops. Appl. Phys. Lett. 93(7), 74103 (2008)

    Article  Google Scholar 

  • Sefiane, K., Steinchen, A., Moffat, R.: On hydrothermal waves observed during evaporation of sessile droplet. Colloids Surf., A 365(1–3), 95–108 (2010)

    Article  Google Scholar 

  • Shi, W., Rong, S., Feng, L.: Marangoni convection instabilities induced by evaporation of liquid layer in an open rectangular pool. Microgravity Sci. Technol. 29(1–2), 91–96 (2017)

    Article  Google Scholar 

  • Smith, M., Davis, S.: Instabilities of dynamic thermocapillary liquid layers. part 1. convective instabilities. J. Fluid Mech. 132(1), 119 (1983).

  • Sobac, B., Brutin, D.: Thermal effects of the substrate on water droplet evaporation. Phys. Rev. E 86(2), 21602 (2012a)

    Article  Google Scholar 

  • Sobac, B., Brutin, D.: Thermocapillary instabilities in an evaporating drop deposited onto a heated substrate. Phys. Fluids 24(3), 32103 (2012b)

    Article  Google Scholar 

  • Toth, B., Teams, O., Industry, S.: Future experiments to measure liquid-gas phase change and heat transfer phenomena on the international space station. Microgravity Sci. Technol. 24(3), 189–194 (2011)

    Article  Google Scholar 

  • Yamada, Y., Nishikawara, M., Yanada, H., Ueda. Y.: Predicting the performance of a loop heat pipe considering evaporation from the meniscus at the three-phase contact line. Therm. Sci. Eng. Prog. 11, 125–132 (2019).

  • Yu, Q., Cai, S., Zhu, Z., Liu, Q., Zhou, B.: Droplet image feedback control system in evaporation experiment. Microgravity Sci. Technol 22(2), 139–144 (2010)

    Article  Google Scholar 

  • Zhong, X., Duan, F.: Stable hydrothermal waves at steady state evaporating droplet surface. Sci. Rep. 7(1), 16219 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grants No. 11532015, No. 11302236), by the Strategic Priority Research Program on Space Science, Chinese Academy of Sciences (Grants No. XDA04073000, XDA04020202-02) and China Manned Space Program (TZ-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiusheng Liu.

Ethics declarations

Conflict of interests

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: The effect of Gravity on Non-equilibrium Processes in Fluids

Guest Editors: Tatyana Lyubimova, Valentina Shevtsova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Liu, W., Li, Z. et al. Evaporation Process of Sessile Liquid Droplet and Layer in Steady State. Microgravity Sci. Technol. 34, 67 (2022). https://doi.org/10.1007/s12217-022-09993-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12217-022-09993-w

Keywords

Navigation