Skip to main content

Advertisement

Log in

Enhanced Boiling Heat Transfer Performance on Mini-pin-finned Copper Surfaces in FC-72

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

The uniformly distributed mini-pin-fins on the copper surface were designed and processed, and the enhanced boiling heat transfer performance on mini-pin-finned copper surfaces in FC-72 was investigated. The smooth copper surface was used as the experimental comparison group. The effect of the copper fin height, spacing, and width on the pool boiling heat transfer performance and the fin efficiency were investigated. At the same liquid subcooling, the critical heat flux and heat transfer coefficient of the uniformly distributed mini-pin-finned copper surface increased with the copper fin height, decreased with the rise of the copper fin spacing and fin width. The fin efficiency increases with the rise of the fin height, spacing, and width. The critical heat flux of the mini-pin-finned copper surface (PF0.3–0.2–2) reached 115.4 W·cm−2 at liquid subcooling of 25 K and increased by about 3.62 times compared with the smooth copper surface, and the heat transfer efficiency of mini-pin-finned copper surface (PF0.5–0.2–2) exceeded 95%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A :

Surface area of a silicon wafer(cm2)

A PF :

Surface area of the uniform mini-pin-finned copper surfaces(cm2)

A SS :

Surface area of smooth copper surface(cm2)

A:

Length of silicon wafer (mm)

h p :

Height of copper mini-pin-fins(mm)

l :

Length of copper mini-pin-fins (mm)

p :

Spacing of copper mini-pin-fins (mm)

w :

Width of copper mini-pin-fins (mm)

P :

Power(W)

h(HTC):

Boiling heat transfer coefficient(W·m2·K1)

CHF:

Critical heat flux (W·m2)

U :

Heating voltage(V)

I :

Heating current(A)

q :

Heat flux (W·m2)

T :

Temperature(K)

ΔT :

Temperature difference(K)

η f :

Mini-pin–fin Efficiency

T f :

Liquid temperature(K)

Max:

Maximum

T sat :

Saturated temperature(K)

T sub :

Subcooling temperature(K).

References

  • Adeoye, S., Parahovnik, A., Peles, Y.: A micro impinging jet with supercritical carbon dioxide. Int. J. Heat. Mass. Transf. 170, 121028 (2021)

    Article  Google Scholar 

  • Bar-Cohen, A., Wang, P.: On-chip Hot Spot Remediation with Miniaturized Thermoelectric Coolers. Microgravity Sci. Technol. 21(S1), 351–359 (2009)

    Article  Google Scholar 

  • Bertossi, R., Caney, N., Gruss, J.A., Dijon, J., Fournier, A., Marty, P.: Influence of carbon nanotubes on deionized water pool boiling performances. Exp. Thermal. Fluid Sci. 61, 187–193 (2015)

    Article  Google Scholar 

  • Byon, C., Choi, S., Kim, S.J.: Critical heat flux of bi-porous sintered copper coatings in FC-72. Int. J. Heat. Mass. Transf. 65, 655–661 (2013)

    Article  Google Scholar 

  • Cao, Z., Liu, B., Preger, C., Wu, Z., Zhang, Y., Wang, X., Messing, M.E., Deppert, K., Wei, J., Sundén, B.: Pool boiling heat transfer of FC-72 on pin-fin silicon surfaces with nanoparticle deposition. Int. J. Heat. Mass. Transf. 126, 1019–1033 (2018)

    Article  Google Scholar 

  • Cao, Z., Liu, B., Preger, C., Zhang, Y.H., Wu, Z., Messing, M.E., Deppert, K., Wei, J.J., Sundén, B.: Nanoparticle-Assisted Pool Boiling Heat Transfer on Micro-Pin-Fin Surfaces. Langmuir 37(3), 1089–1101 (2021)

    Article  Google Scholar 

  • Dadjoo, M., Etesami, N., Esfahany, M.N.: Influence of orientation and roughness of heater surface on critical heat flux and pool boiling heat transfer coefficient of nanofluid. Appl. Therm. Eng. 124, 353–361 (2017)

    Article  Google Scholar 

  • Devahdhanush, V.S., Mudawar, I.: Review of Critical Heat Flux (CHF) in Jet Impingement Boiling. Int. J. Heat. Mass. Transf. 169, 120893 (2021)

    Article  Google Scholar 

  • Dhadda, G., Hamed, M., Koshy, P.: Electrical discharge surface texturing for enhanced pool boiling heat transfer. J. Mater. Process. Technol. 293, 117083 (2021)

    Article  Google Scholar 

  • Duan, L., Liu, B., Qi, B., Zhang, Y., Wei, J.: Pool boiling heat transfer on silicon chips with non-uniform micro-pillars. Int. J. Heat. Mass. Transf. 151, 119456 (2020)

    Article  Google Scholar 

  • Elkholy, A., Kempers, R.: Enhancement of pool boiling heat transfer using 3D-printed polymer fixtures. Exp. Thermal. Fluid. Sci. 114, 110056 (2020)

    Article  Google Scholar 

  • Fan, S., Jiao, L., Wang, K., Duan, F.: Pool boiling heat transfer of saturated water on rough surfaces with the effect of roughening techniques. Int. J. Heat. Mass. Transf. 159, 120054 (2020)

    Article  Google Scholar 

  • Godinez, J.C., Cho, H., Fadda, D., Lee, J., Park, S.J., You, S.M.: Effects of materials and microstructures on pool boiling of saturated water from metallic surfaces. Int. J. Therm. Sci. 165, 106929 (2021)

    Article  Google Scholar 

  • Gupta, S.K., Misra, R.D.: Flow boiling heat transfer performance of copper-alumina micro-nanostructured surfaces developed by forced convection electrodeposition technique. Chem. Eng. Process. Process. Intensif. 164, 108408 (2021)

    Article  Google Scholar 

  • He, Z., Yan, Y., Zhang, Z.: Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: A review. Energy 216, 119223 (2021)

    Article  Google Scholar 

  • Jo, H., Park, H.S., Kim, M.H.: Single bubble dynamics on hydrophobic–hydrophilic mixed surfaces. Int. J. Heat. Mass. Transf. 93, 554–565 (2016)

    Article  Google Scholar 

  • Jothi Prakash, C.G., Prasanth, R.: Enhanced boiling heat transfer by nano structured surfaces and nanofluids. Renew. Sustain. Energy. Rev. 82, 4028–4043 (2018)

    Article  Google Scholar 

  • Jung, J.-Y., Kwak, H.-Y.: Effect of surface condition on boiling heat transfer from silicon chip with submicron-scale roughness. Int. J. Heat. Mass. Transf. 49(23–24), 4543–4551 (2006)

    Article  MATH  Google Scholar 

  • Kim, B.S., Lee, H., Shin, S., Choi, G., Cho, H.H.: Interfacial wicking dynamics and its impact on critical heat flux of boiling heat transfer. Appl. Phys. Lett. 105(19), 191601 (2014)

    Article  Google Scholar 

  • Kim, J.M., Kong, B., Lee, H.-B.-R., Wongwises, S., Ahn, H.S.: Effect of h-BN coating on nucleate boiling heat transfer performance in pool boiling. Exp. Therma.l Fluid. Sci. 98, 12–19 (2018)

    Article  Google Scholar 

  • Kim, S.H., Lee, G.C., Kang, J.Y., Moriyama, K., Kim, M.H., Park, H.S.: Boiling heat transfer and critical heat flux evaluation of the pool boiling on micro structured surface. Int. J. Heat. Mass. Transf. 91, 1140–1147 (2015)

    Article  Google Scholar 

  • Kim, Y.C.: Effect of surface roughness on pool boiling heat transfer in subcooled water-CuO nanofluid. J. Mech. Sci. Technol. 28(8), 3371–3376 (2014)

    Article  Google Scholar 

  • Kong, X., Zhang, Y., Wei, J.: Experimental study of pool boiling heat transfer on novel bistructured surfaces based on micro-pin-finned structure. Exp. Thermal. Fluid Sci. 91, 9–19 (2018)

    Article  Google Scholar 

  • Lee, J., Mudawar, I.: Fluid flow and heat transfer characteristics of low temperature two-phase micro-channel heat sinks – Part 1: Experimental methods and flow visualization results. Int. J. Heat. Mass. Transf. 51(17–18), 4315–4326 (2008)

    Article  MATH  Google Scholar 

  • Li, C.H., Li, T., Hodgins, P., Hunter, C.N., Voevodin, A.A., Jones, J.G., Peterson, G.P.: Comparison study of liquid replenishing impacts on critical heat flux and heat transfer coefficient of nucleate pool boiling on multiscale modulated porous structures. Int. J. Heat. Mass. Transf. 54(15–16), 3146–3155 (2011)

    Article  Google Scholar 

  • Li, H., Li, R., Zhou, R., Zhou, G., Tang, Y.: Pool boiling heat transfer of multi-scale composite copper powders fabricated by sintering-alloying-dealloying treatment. Int. J. Heat. Mass. Transf. 147, 118962 (2020)

    Article  Google Scholar 

  • Li, J.-Q., Mou, L.-W., Zhang, Y.-H., Yang, Z.-S., Hou, M.-H., Fan, L.-W., Yu, Z.-T.: An experimental study of the accelerated quenching rate and enhanced pool boiling heat transfer on rodlets with a superhydrophilic surface in subcooled water. Exp. Thermal. Fluid Sci. 92, 103–112 (2018)

    Article  Google Scholar 

  • Li, K., Zhao, J.-F., Kang, Q., Wang, S.-F.: Academician Wen-Rui Hu – Eminent Pioneer and Prominent Leader of Microgravity Science in China. Microgravity. Sci. Technol. 34(2) (2022)

  • Liang, G., Mudawar, I.: Review of nanoscale boiling enhancement techniques and proposed systematic testing strategy to ensure cooling reliability and repeatability. Appl. Therm. Eng. 184, 115982 (2021)

    Article  Google Scholar 

  • Liu, B., Cao, Z., Zhang, Y., Wu, Z., Pham, A., Wang, W., Yan, Z., Wei, J., Sundén, B.: Pool boiling heat transfer of N-pentane on micro/nanostructured surfaces. Int. J. Therm. Sci. 130, 386–394 (2018)

    Article  Google Scholar 

  • Liu, B., Garivalis, A.I., Cao, Z., Zhang, Y., Wei, J., Marco, P.D.: Effects of electric field on pool boiling heat transfer over microstructured surfaces under different liquid subcoolings, Int. J. Heat. Mass. Transf. 183 (2022a)

  • Liu, B., Liu, J., Zhou, J., Yuan, B., Zhang, Y., Wei, J., Wang, W.: Experimental study of subcooled boiling pool heat transfer and its “hook back” phenomenon on micro/nanostructured surfaces. Int. Commun. Heat. Mass. Transf. 100, 73–82 (2019)

    Article  Google Scholar 

  • Liu, B., Yang, X., Jie, Z., Wei, J., Li, Q.: Enhanced pool boiling on micro-nano composited surfaces with nanostructures on micro-pin-fins. Int. J. Heat. Mass. Transf. 190 (2022b)

  • Liu, B., Yu, L., Zhang, Y., Marco, P.D., Wei, J.: Enhanced Nucleate Pool Boiling by Coupling the Pinning Act and Cluster Bubble Nucleation of Micro-nano Composited Surfaces. Int. J. Heat. Mass. Transf. 157, 119979 (2020)

    Article  Google Scholar 

  • Ma, A., Wei, J., Yuan, M., Fang, J.: Enhanced flow boiling heat transfer of FC-72 on micro-pin-finned surfaces. Int. J. Heat Mass Transf. 52(13–14), 2925–2931 (2009)

    Article  Google Scholar 

  • Moghadasi, H., Saffari, H.: Experimental study of nucleate pool boiling heat transfer improvement utilizing micro/nanoparticles porous coating on copper surfaces. Int. J. Mech. Sci. 196, 106270 (2021)

    Article  Google Scholar 

  • Nguyen, T.B., Liu, D., Kayes, M.I., Wang, B., Rashin, N., Leu, P.W., Tran, T.: Critical heat flux enhancement in pool boiling through increased rewetting on nanopillar array surfaces. Sci. Rep. 8(1), 4815 (2018)

    Article  Google Scholar 

  • O’Connor, J.P., You, S.M.: Painting technique to enhance pool boiling heat transfer in saturated FC-72. J. Heat. Transf. 117(2), 387–393 (1995)

    Article  Google Scholar 

  • Pastuszko, R.: Pool boiling for extended surfaces with narrow tunnels – Visualization and a simplified model. Exp. Thermal. Fluid Sci. 38, 149–164 (2012)

    Article  Google Scholar 

  • Patil, C.M., Kandlikar, S.G.: Pool boiling enhancement through microporous coatings selectively electrodeposited on fin tops of open microchannels. Int. J. Heat. Mass. Transf. 79, 816–828 (2014)

    Article  Google Scholar 

  • Rainey, K.N., You, S.M., Lee, S.: Effect of pressure, subcooling, and dissolved gas on pool boiling heat transfer from microporous, square pin-finned surfaces in FC-72. Int. J. Heat. Mass. Transf. 46(1), 23–35 (2003)

    Article  Google Scholar 

  • Ray, M., Deb, S., Bhaumik, S.: Pool boiling heat transfer of refrigerant R-134a on TiO2 nano wire arrays surface. Appl. Therm. Eng. 107, 1294–1303 (2016)

    Article  Google Scholar 

  • Song, K., Jun, S., You, S.M., Kim, H.Y., Kim, M.H., Revankar, S.T.: Flow boiling heat transfer from downward-facing thick heater block in an inclined channel with plain and microporous coated surfaces. Int. J. Heat. Mass. Transf. 129, 1010–1022 (2019)

    Article  Google Scholar 

  • Tang, Y., He, Z., Lu, L., Wang, H., Pan, M.: Burr formation in milling cross-connected microchannels with a thin slotting cutter. Precis. Eng. 35(1), 108–115 (2011)

    Article  Google Scholar 

  • Thiagarajan, S.J., Yang, R., King, C., Narumanchi, S.: Bubble dynamics and nucleate pool boiling heat transfer on microporous copper surfaces. Int. J. Heat. Mass. Transf. 89, 1297–1315 (2015)

    Article  Google Scholar 

  • Tran, N., Sajjad, U., Lin, R., Wang, C.-C.: Effects of surface inclination and type of surface roughness on the nucleate boiling heat transfer performance of HFE-7200 dielectric fluid. Int. J. Heat. Mass. Transf. 147, 119015 (2020)

    Article  Google Scholar 

  • Wang, L., Wang, Y., Cheng, W., Yu, H., Xu, J.: Boiling heat transfer properties of copper surface with different microstructures. Mater. Chem. Phys. 267, 124589 (2021)

    Article  Google Scholar 

  • Wei, J.J., Honda, H.: Effects of fin geometry on boiling heat transfer from silicon chips with micro-pin-fins immersed in FC-72. Int. J. Heat. Mass. Transf. 46(21), 4059–4070 (2003)

    Article  Google Scholar 

  • Wei, J., Zhao, J., Yuan, M., Xue, Y.: Boiling Heat Transfer Enhancement by Using Micro-pin-finned Surface for Electronics Cooling. Microgravity. Sci. Technol. 21(S1), 159–173 (2009)

    Article  Google Scholar 

  • Xu, J., Wang, Y., Yang, R., Liu, W., Wu, H., Ding, Y., Li, Y.: A review of boiling heat transfer characteristics in binary mixtures. Int. J. Heat. Mass. Transf. 164, 120570 (2021)

    Article  Google Scholar 

  • Yu, T., Cui, C., Qi, B., Wei, J., Yuan, J., Qaisrani, M.A.: Boiling heat transfer and bubble distribution on inhomogeneous wetting surface patterned with Sierpinski carpet. Appl. Therm. Eng. 180, 115818 (2020)

    Article  Google Scholar 

  • Yuan, B., Zhang, Y., Zhou, J., Liu, L., Wei, J.: Critical heat flux prediction model for flow boiling on micro-pin-finned surfaces. Int. J. Heat. Mass. Transf. 154 (2020)

  • Yuan, M., Wei, J., Xue, Y., Fang, J.: Subcooled flow boiling heat transfer of FC-72 from silicon chips fabricated with micro-pin-fins. Int. J. Therm. Sci. 48(7), 1416–1422 (2009)

    Article  Google Scholar 

  • Zhang, Y., Liu, B., Wei, J., Sundén, B., Wu, Z.: Heat transfer correlations for jet impingement boiling over micro-pin-finned surface. Int. J. Heat. Mass. Transf. 126, 401–413 (2018a)

    Article  Google Scholar 

  • Zhang, Y., Zhou, J., Zhou, W., Qi, B., Wei, J.: CHF correlation of boiling in FC-72 with micro-pin-fins for electronics cooling. Appl. Therm. Eng. 138, 494–500 (2018b)

    Article  Google Scholar 

  • Zhao, J.F., Wan, S.X., Liu, G., Yan, N., Hu, W.R.: Subcooled pool boiling on thin wire in microgravity. Acta. Astronaut. 64(2–3), 188–194 (2009)

    Article  Google Scholar 

  • Zhou, J., Liu, B., Qi, B., Wei, J., Mao, H.: Experimental investigations of bubble behaviors and heat transfer performance on micro/nanostructure surfaces. Int. J. Therm. Sci. 135, 133–147 (2019)

    Article  Google Scholar 

  • Zhou, J., Qi, B., Zhang, Y., Wei, J., Yang, Y., Cao, Q.: Experimental and theoretical study of bubble coalescence and departure behaviors during nucleate pool boiling on uniform smooth and micro-pin-finned surfaces under different subcoolings and heat fluxes. Exp. Thermal. Fluid. Sci. 112, 109996 (2020)

    Article  Google Scholar 

  • Zhou, J., Xu, P., Qi, B., Zhang, Y., Wei, J.: Effects of micro-pin-fins on the bubble growth and movement of nucleate pool boiling on vertical surfaces. Int. J. Therm. Sci. 171, 107186 (2022)

    Article  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (No. 51976163), Key research and development program in Shaanxi Province of China (No.2021GXLH-Z-076), Joint Funds of the National Natural Science Foundation of China (No.U2141218, U1738119), Second batch of scientific experiment proposals aboard China Space Station (No.TGMTYY00-JY-53–1.00), and ESA-CMSA Joint Boiling Project (No.TGMTYY00-RW-05–1.00).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yonghai Zhang or Zhiqiang Zhu.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Research Pioneer and Leader of Microgravity Science in China: Dedicated to the 85th Birthday of Academician Wen-Rui Hu

Guest Editors: Jian-Fu Zhao, Kai Li

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Xu, P., Du, W. et al. Enhanced Boiling Heat Transfer Performance on Mini-pin-finned Copper Surfaces in FC-72. Microgravity Sci. Technol. 34, 47 (2022). https://doi.org/10.1007/s12217-022-09968-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12217-022-09968-x

Keywords

Navigation