Skip to main content
Log in

Numerical Study on Bubble Motion in Pore Structure under Microgravity Using the Lattice Boltzmann Method

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

This paper reports on a study of bubble motion in a regularly spaced pore structure under microgravity using the lattice Boltzmann method (LBM). Initially, a single bubble’s motion is derived; then the simulation is extended for two-bubble dynamics. By considering a gas-liquid two-phase flow, the interaction force (namely the fluid-fluid cohesive force and fluid-solid adhesive force) is derived using the Shan-Chen model with multicomponent single relaxation. This determines the interaction forces governing a single bubble’s dynamics in the porous structure. Then the primary parameters that influence bubble motion are studied, such as the bubble’s diameter, distance between adjacent cells, arrangement between cells, and the effects of flow-field characteristics on single-bubble motion. The simulation developed for single-bubble motion provides the basis for studying a two-bubble system’s motion trajectory and coalescence behavior. By employing the aforementioned analysis, the proposed approach optimizes porous media’s structural parameters under microgravity, resulting in increased bubble movement speed and an enhanced two-phase flow in porous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

c :

Lattice unit velocity

c s :

Lattice speed of sound

e i :

Lattice velocity

f i :

Probability density distribution functions

F :

Force

g :

Lattice gravity

\( {g}_{k\overline{k}} \) :

The interaction force strength between the kth and \( {\overline{k}}^{\mathrm{th}} \) component

P :

Pressure

t :

Time

u k :

The variation in velocity

w i :

Weight coefficient

x :

Position

ρ :

Density

υ :

Kinematic viscosity

δt :

Lattice time step

δx :

Lattice spacing

τ :

Relaxation time

ψ:

Weighting function

σ :

Surface tension coefficient

l :

Liquid

g :

Gas

eq :

Equilibrium

k :

The kth component

Re b :

Reynolds number for bubble

Ca b :

CAPILLARY number for bubble

Г :

The density ratio between the liquid and the gas phase

M :

The viscosity ratio between the liquid and the gas phase

Eo :

Eotvos number

Mo :

Morton number

References

  • Abishek, S., King, A.J.C., Narayanaswamy, R.: Dynamics of a Taylor bubble in steady and pulsatile co-current flow of Newtonian and shear-thinning liquids in a vertical tube. Int. J. Multiphase Flow. 74, 148–164 (2015)

    Article  Google Scholar 

  • Angelopoulos, A.D., Paunov, V.N., Burganos, V.N., et al.: Lattice Boltzmann simulation of nonideal vapor-liquid flow in porous media. Phys. Rev. E. 57(3), 3237–3245 (1998)

    Article  Google Scholar 

  • Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3), 511–525 (1954)

    Article  Google Scholar 

  • Chen, L., Kang, Q.J., Mu, Y.T., et al.: A critical review of the pseudopotential multiphase lattice Boltzmann model: methods and applications. Int. J. Heat Mass Transf. 76, 210–236 (2014)

    Article  Google Scholar 

  • de Santos, J.M., Melli, T.R., Scriven, L.E.: Mechanics of gas-liquid flow in packedbed reactors. Annu. Rev. Fluid Mech. 23, 233–260 (1991)

    Article  Google Scholar 

  • Dhir, V.K., Warrie, G.R., Aktinol, E., et al.: Nucleate pool boiling experiments (NPBX) on the international space station. Microgravity Sci. Technol. 24(5), 307–325 (2012)

    Article  Google Scholar 

  • Dong, B., Yan, Y.Y., Li, W., Song, Y.: Lattice Boltzmann simulation of viscous fingering phenomenon of immiscible fluids displacement in a channel. Comput. Fluids. 39, 768–779 (2010)

    Article  MathSciNet  Google Scholar 

  • Dou, Z., Zhou, Z.F.: Numerical study of non-uniqueness of the factors influencing relative permeability in heterogeneous porous media by lattice Boltzmann method. Int. J. Heat Fluid Flow. 42, 23–32 (2013)

    Article  Google Scholar 

  • Eduardo, A., Gopinath, R.W., Vijay, K.D.: Single bubble dynamics under microgravity conditions in the presence of dissolved gas in the liquid. Int. J. Heat Mass Transf. 79, 251–268 (2014)

    Article  Google Scholar 

  • Gong, S., Cheng, P.: A lattice Boltzmann method for simulation of liquid-vapor phase-change heat transfer. Int. J. Heat Mass Transf. 55, 4923–4927 (2012a)

    Article  Google Scholar 

  • Gong, S., Cheng, P.: Numerical investigation of droplet motion and coalescence by an improved lattice Boltzmann model for phase transitions and multiphase flows. Comput. Fluids. 53, 93–104 (2012b)

    Article  MathSciNet  Google Scholar 

  • Gong, S., Cheng, P.: Lattice Boltzmann simulation of periodic bubble nucleation, growth and departure from a heated surface in pool boiling. Int. J. Heat Mass Transf. 64, 122–132 (2013)

    Article  Google Scholar 

  • Gong, S., Cheng, P.: Numerical investigation of saturated flow boiling in microchannels by the lattice Boltzmann method. Numer Heat Transfer, Part A. 65, 644–661 (2014)

    Article  Google Scholar 

  • Gong, W., Yan, Y., Chen, S.: A study on the unphysical mass transfer of SCMP pseudopotential LBM. Int. Commun. Heat Mass Transfer. 123, 815–820 (2018)

    Article  Google Scholar 

  • Guo, Z.L., Zheng, C.G.: Theory and Applications of Lattice Boltzmann Method. Science Press, Beijing (2008)

    Google Scholar 

  • He, Y.L., Wang, Y., Li, Q.: Lattice Boltzmann Method: Theory and Applications. Science Press, Beijing (2008)

    Google Scholar 

  • Huang, H., Thorne Jr., D.T., Schaap, M.G., et al.: Proposed approximation for contact angles in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models. Phys. Rev. E. 76(6 Pt 2), 066701 (2007)

    Article  Google Scholar 

  • Kannengieser, O., Colin, C., Bergez, W.: Pool boiling with non-condensable gas in microgravity: results of a sounding rocket experiment. Microgravity Sci Technol. 22(3), 447–454 (2010)

    Article  Google Scholar 

  • Kornev, K.G., Neimark, A.V., Rozhkov, A.N.: Foam in porous media: thermodynamics and hydrodynamic peculiarities. Adv. Colloid Interf. Sci. 82, 127–187 (1999)

    Article  Google Scholar 

  • Li, H., Pan, C., Miller, C.T.: Pore-scale investigation of viscous coupling effects for two-phase flow in porous media. Phys. Rev. E. 72, 026705 (2005)

    Article  Google Scholar 

  • Li, Q., Kang, Q.J., Francois, M.M., He, Y.L., Luo, K.H.: Lattice Boltzmann modeling of boiling heat transfer: the boiling curve and the effects of wettability. Int. J. Heat Mass Transf. 85, 787–796 (2015)

    Article  Google Scholar 

  • Li, Q., Luo, K.H., Kang, Q.J., He, Y.L., Chen, Q., Liu, Q.: Lattice Boltzmann methods for multiphase flow and phase change heat transfer. Prog. Energy Combust. Sci. 52, 62–105 (2016)

    Article  Google Scholar 

  • Pan, C., Hilpert, M., Miller, C.T.: Lattice-Boltzmann simulation of two-phase flow in porous media. Water Resour. Res. 40(1), W01501 (2004)

    Article  Google Scholar 

  • Parmigiani, A., Huber, C., Bachmann, O.: Pore-scale mass and reactant transport in multiphase porous media flows. J. Fluid Mech. 686, 40–76 (2011)

    Article  Google Scholar 

  • Qi, B.J., Wei, J.J., Wang, X.L., et al.: Influences of wake-effects on bubble dynamics by utilizing micro-pin-finned surfaces under microgravity. Appl. Therm. Eng. 113, 1332–1344 (2017)

    Article  Google Scholar 

  • Qian, Y.H., D'Humières, D., Lallemand, P.: Lattice BGK models for Navier-stokes equation. Europhys. Lett. 17(6), 479–484 (1992)

    Article  Google Scholar 

  • Qiuand, D.M., Dhir, V.K., Chao, D., et al.: Single-bubble dynamics during pool boiling under low gravity conditions. J. Thermophys. Heat Transf. 16(3), 336–345 (2002)

    Article  Google Scholar 

  • Rayleigh, L.: On the pressure developed in a liquid during the collapse of a spherical cavity. Philos. Mag. 34, 94–98 (1917)

    Article  Google Scholar 

  • Sankaranarayanan, K., Shan, X., Kevrekidis, I.G., Sundaresan, S.: Bubble flow simulations with the lattice Boltzmann method [J]. Chem. Eng. Sci. 54(21), 4817–4823 (1999)

    Article  Google Scholar 

  • Santarelli, C., Fröhlich, J.: Direct numerical simulations of spherical bubbles in vertical turbulent channel flow. Influence of bubble size and bidispersity. Int. J. Multiphase Flow. 81, 27–45 (2016)

    Article  Google Scholar 

  • Sun, T., Li, W.: Three-dimensional numerical simulation of nucleate boiling bubble by lattice Boltzmann method. Comput. Fluids. 88, 400–409 (2013)

    Article  MathSciNet  Google Scholar 

  • Sun, D.K., Zhu, M.F., Wang, J., et al.: Lattice Boltzmann modeling of bubble formation and dendritic growth in solidification of binary alloys. Int. J. Heat Mass Transf. 94, 474–487 (2016)

    Article  Google Scholar 

  • Wang, T., Li, H.X., Zhao, J.F.: Three-dimensional numerical simulation of bubble dynamics in microgravity under the influence of nonuniform electric fields. Microgravity Sci. Technol. 28(2), 133–142 (2016)

    Article  Google Scholar 

  • Wolf-Gladrow, D.A.: Lattice gas cellular automata and lattice Boltzmann models. Lect. Notes Math. 1725, (2000)

  • Wu, K., Li, Z.D., Zhao, J.F., Li, H.X., Li, K.: Partial nucleate Pool boiling at low heat flux: preliminary ground test for SOBER-SJ10. Microgravity Sci. Technol. 28(2), 165–178 (2016)

    Article  Google Scholar 

  • Xue, Y.F., Zhao, J.F., Wei, J.J., Li, J., Guo, D., Wan, S.X.: Experimental study of nucleate pool boiling of FC-72 on smooth surface under microgravity. Microgravity Sci. Technol. 23(1), 75–85 (2011)

    Article  Google Scholar 

  • Zhao, J.F.: Two-phase flow and pool boiling heat transfer in microgravity. Int. J. Multiphase Flow. 36(2), 135–143 (2010)

    Article  Google Scholar 

  • Zhao, J.F., Liu, G., Wan, S.X., Yan, N.: Bubble dynamics in nucleate pool boiling on thin wires in microgravity. Microgravity Sci. Technol. 20(2), 81–89 (2008)

    Article  Google Scholar 

  • Ziegler, D.P.: Boundary conditions for lattice Boltzmann simulations. J. Stat. Phys. 71(5–6), 1171–1177 (1993)

    Article  Google Scholar 

  • Zou, Q., He, X.: On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys. Fluids. 9(6), 1591–1598 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is financially supported by National Natural Science Foundation of China (No. 51606037), Natural Science Foundation of Jiangsu Province (No. BK20160687), and China’s Manned Space Program (TZ-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenqian Chen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Ma, Q. & Chen, Z. Numerical Study on Bubble Motion in Pore Structure under Microgravity Using the Lattice Boltzmann Method. Microgravity Sci. Technol. 31, 207–222 (2019). https://doi.org/10.1007/s12217-019-9681-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-019-9681-6

Keywords

Navigation