Skip to main content
Log in

Increased Blood Flow by Unilateral Intermittent Compression on Hindlimbs May Prevent Bone Loss

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

Osteoporosis characterized by bone loss increases the risk of bone fracture and seriously affects people’s health. As a non-invasive regimen, intermittent compression (IC) was used in this study to investigate the efficacy on countering bone loss. We aimed to investigate the unilateral effect of intermittent compression on blood flow as well as bone quality in a rat model of disuse with and without IC mechanosignals. 24 rats were randomly divided into three groups (n = 8, each): hindlimb unloading (HU), HU + intermittent compression (HUIC) and cage-control (CON). The experiment last 21 days. IC was applied on the left hindlimb in HUIC group with a 1 Hz frequency, 30 mmHg pressure for 20 min/day. The blood flow was recorded by a continuous-wave Doppler flowmeter. Bone mineral density (BMD) and structural parameters of trabecular and cortical bone and muscle cross section area was determined using microcomputer tomography (μCT). IC could increase the blood flow and counter bone loss in hindlimbs. Furthermore, it had a cross-over positive effects on the blood flow and bone. The blood flow in uncompressed side was higher than compressed side. There was a significant growth of tibial cortical bone in the uncompressed side versus compressed side in HUIC group. In general, unilateral IC increased the blood flow in both sides and was able to prevent contralateral bone loss induced by hindlimb unloading and the blood flow was involved in this contralateral effect. The cross-over effect of IC on the body provides us a new idea for the treatment of osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Representative cross sections and 3DμCT images of tibia.

Similar content being viewed by others

References

  • Albertazzi, P., Steel, S.A., Bottazzi, M.: Effect of intermittent compression therapy on bone mineral density in women with low bone mass. Bone. 37(5), 662–668 (2005)

    Article  Google Scholar 

  • Almstedt, H.C., Lewis, Z.H.: Intermittent pneumatic compression and bone mineral density: an exploratory study. J. Sport Rehabil. 25(1), 1–6 (2016)

    Article  Google Scholar 

  • Armbrecht, G., Belavy, D.L., Backstrom, M., Beller, G., Alexandre, C., Rizzoli, R., Felsenberg, D.: Trabecular and cortical bone density and architecture in women after 60 days of bed rest using high-resolution pQCT: WISE 2005. J. Bone Miner. Res. 26(10), 2399–2410 (2011). https://doi.org/10.1002/jbmr.482

    Article  Google Scholar 

  • Castrogiovanni, P., Trovato, F.M., Szychlinska, M.A., Nsir, H., Imbesi, R., Musumeci, G.: The importance of physical activity in osteoporosis. From the molecular pathways to the clinical evidence. Histol. Histopathol. 31(11), 1183–1194 (2016). https://doi.org/10.14670/HH-11-793

    Article  Google Scholar 

  • Clément, G.: The maintenance of physiological function in humans during spaceflight. Int SportMed J. 6(4), 185–198 (2005)

    MathSciNet  Google Scholar 

  • Colleran, P.N., Wilkerson, M.K., Bloomfield, S.A., Suva, L.J., Turner, R.T., Delp, M.D.: Alterations in skeletal perfusion with simulated microgravity: a possible mechanism for bone remodeling. J. Appl. Physiol. 89(3), 1046–1054 (2000)

    Article  Google Scholar 

  • Dana Carpenter, R., LeBlanc, A.D., Evans, H., Sibonga, J.D., Lang, T.F.: Long-term changes in the density and structure of the human hip and spine after long-duration spaceflight. Acta Astronautica. 67(1–2), 71–81 (2010). https://doi.org/10.1016/j.actaastro.2010.01.022

    Article  Google Scholar 

  • Govindaraju, S.R., Bain, J.L., Eddinger, T.J., Riley, D.A.: Vibration causes acute vascular injury in a two-step process: vasoconstriction and vacuole disruption. Anat. Rec. 291(8), 999–1006 (2008). https://doi.org/10.1002/ar.20718

    Article  Google Scholar 

  • Hu, M., Cheng, J., Qin, Y.X.: Dynamic hydraulic flow stimulation on mitigation of trabecular bone loss in a rat functional disuse model. Bone. 51(4), 819–825 (2012). https://doi.org/10.1016/j.bone.2012.06.030

    Article  Google Scholar 

  • Huang, Y., Luan, H., Sun, L., Bi, J., Wang, Y., Fan, Y.: Local vibration enhanced the efficacy of passive exercise on mitigating bone loss in hindlimb unloading rats. Acta Astronautica. 137, 373–381 (2017). https://doi.org/10.1016/j.actaastro.2017.05.008

    Article  Google Scholar 

  • Kang, H., Sun, L., Huang, Y., Wang, Z., Zhao, P., Fan, Y., Deng, X.: Regional specific adaptation of the endothelial glycocalyx dimension in tail-suspended rats. Pflugers Archiv : Eur J Physiol. 467(6), 1291–1301 (2015). https://doi.org/10.1007/s00424-014-1568-1

    Article  Google Scholar 

  • Koltzenburg, M., Patrick, D., McMahon, S.B.: Does the right side know what the left is doing? Trends Neurosci. 22(3), 122–127 (1999)

    Article  Google Scholar 

  • Li, W.T., Huang, Y.F., Sun, L.W., Luan, H.Q., Zhu, B.Z., Fan, Y.B.: Would interstitial fluid flow be responsible for skeletal maintenance in tail-suspended rats? Microgravity Sci. Technol. 29(1–2), 107–114 (2017)

    Article  Google Scholar 

  • Liphardt, A.M., Schipilow, J., Hanley, D.A., Boyd, S.K.: Bone quality in osteopenic postmenopausal women is not improved after 12 months of whole-body vibration training. Osteoporos. Int. 26(3), 911–920 (2015)

    Article  Google Scholar 

  • Marín, P.J., Hazell, T.J., García-Gutiérrez, M.T., Cochrane, D.J.: Acute unilateral leg vibration exercise improves contralateral neuromuscular performance. J. Musculoskelet. Neuronal Interact. 14(1), 58–67 (2014)

    Google Scholar 

  • Morey-Holton, E.R., Globus, R.K.: Hindlimb unloading rodent model: technical aspects. J. Appl. Physiol. 92(4), 1367–1377 (2002). https://doi.org/10.1152/japplphysiol.00969.2001

    Article  Google Scholar 

  • Musumeci, G.: The use of vibration as physical exercise and therapy. J. Funct. Morphol. Kinesiol. 2(2), 17 (2017)

    Article  Google Scholar 

  • Park, S., Silva, M.: Intermittent pneumatic soft tissue compression: changes in periosteal and medullary canal blood flow. J. Orthop. Res. 26(4), 570–577 (2008)

    Article  Google Scholar 

  • Park, J.H., Seo, D.H., Cho, S., Kim, S.H., Eom, S., Kim, H.S.: Effects of partial vibration on morphological changes in bone and surrounding muscle of rats under microgravity condition: comparative study by gender. Microgravity Sci. Technol. 27(5), 361–368 (2015). https://doi.org/10.1007/s12217-015-9425-1

    Article  Google Scholar 

  • Pichler, K., Loreto, C., Leonardi, R., Reuber, T., Weinberg, A.M., Musumeci, G.: RANKL is downregulated in bone cells by physical activity (treadmill and vibration stimulation training) in rat with glucocorticoid-induced osteoporosis. Histol Histopathol. 28(9), 1185–1196 (2013)

    Google Scholar 

  • Ramasamy, S.K., Kusumbe, A.P., Schiller, M., Zeuschner, D., Bixel, M.G., Milia, C., Gamrekelashvili, J., Limbourg, A., Medvinsky, A., Santoro, M.M.: Blood flow controls bone vascular function and osteogenesis. Nat. Commun. 7, 13601 (2016)

    Article  Google Scholar 

  • Roseguini, B.T., Arce-Esquivel, A.A., Newcomer, S.C., Yang, H.T., Terjung, R., Laughlin, M.H.: Intermittent pneumatic leg compressions enhance muscle performance and blood flow in a model of peripheral arterial insufficiency. J. Appl. Physiol. 112(9), 1556–1563 (2012). https://doi.org/10.1152/japplphysiol.01337.2011

    Article  Google Scholar 

  • Rubin, J., Biskobing, D., Fan, X., Rubin, C., Mcleod, K., Taylor, W.R.: Pressure regulates osteoclast formation and MCSF expression in marrow culture. J. Cell. Physiol. 170(1), 81–87 (1997)

    Article  Google Scholar 

  • Sample, S.J., Collins, R.J., Wilson, A.P., Racette, M.A., Behan, M., Markel, M.D., Kalscheur, V.L., Hao, Z., Muir, P.: Systemic effects of ulna loading in male rats during functional adaptation. J Bone Miner Res Off J Am Soc Bone Miner Res. 25(9), 2016–2028 (2010)

    Article  Google Scholar 

  • Sheldon, R.D., Roseguini, B.T., Thyfault, J.P., Crist, B.D., Laughlin, M.H., Newcomer, S.C.: Acute impact of intermittent pneumatic leg compression frequency on limb hemodynamics, vascular function, and skeletal muscle gene expression in humans. J. Appl. Physiol. 112(12), 2099–2109 (2012)

    Article  Google Scholar 

  • Sibonga, J.D.: Spaceflight-induced bone loss: is there an osteoporosis risk? Curr Osteoporos Rep. 11(2), 92–98 (2013). https://doi.org/10.1007/s11914-013-0136-5

    Article  Google Scholar 

  • Sikavitsas, V.I., Temenoff, J.S., Mikos, A.G.: Biomaterials and bone mechanotransduction. Biomaterials. 22(19), 2581–2593 (2001)

    Article  Google Scholar 

  • Song, Y., Forsgren, S., Yu, J., Lorentzon, R., Stål, P.S.: Effects on contralateral muscles after unilateral electrical muscle stimulation and exercise. PLoS One. 7(12), e52230 (2012)

    Article  Google Scholar 

  • Song, Y., Forsgren, S., Liu, J.X., Yu, J.G., Stål, P.: Unilateral muscle overuse causes bilateral changes in muscle Fiber composition and vascular supply. PLoS One. 9(12), e116455 (2014)

    Article  Google Scholar 

  • Souza, R.L.D., Pitsillides, A.A., Lanyon, L.E., Skerry, T.M., Chenu, C.: Sympathetic nervous system does not mediate the load-induced cortical new bone formation. J Bone Miner Res. 20(12), 2159–2168 (2005)

    Article  Google Scholar 

  • Sperlich, B., Born, D.P., Kaskinoro, K., Kalliokoski, K.K., Laaksonen, M.S.: Squeezing the muscle: compression clothing and muscle metabolism during recovery from high intensity exercise. PLoS One. 8(4), e60923 (2013). https://doi.org/10.1371/journal.pone.0060923

    Article  Google Scholar 

  • Stabley, J.N., Prisby, R.D., Behnke, B.J., Delp, M.D.: Chronic skeletal unloading of the rat femur: mechanisms and functional consequences of vascular remodeling. Bone. 57(2), 355–360 (2013). https://doi.org/10.1016/j.bone.2013.09.003

    Article  Google Scholar 

  • Sugiyama, T., Price, J.S., Lanyon, L.E.: Functional adaptation to mechanical loading in both cortical and cancellous bone is controlled locally and is confined to the loaded bones. Bone. 46(2), 314–321 (2010)

    Article  Google Scholar 

  • Sun, L., Blottner, D., Luan, H., Salanova, M., Wang, C., Niu, H., Felsenberg, D., Fan, Y.: Bone and muscle structure and quality preserved by active versus passive muscle exercise on a new stepper device in 21 days tail-suspended rats. J. Musculoskelet. Neuronal Interact. 13(2), 166–177 (2013)

    Google Scholar 

  • Tella, S.H., Gallagher, J.C.: Prevention and treatment of postmenopausal osteoporosis. J. Steroid Biochem. Mol. Biol. 142, 155–170 (2014). https://doi.org/10.1016/j.jsbmb.2013.09.008

    Article  Google Scholar 

  • Wakeling, J.M., Jackman, M., Namburete, A.I.: The effect of external compression on the mechanics of muscle contraction. J. Appl. Biomech. 29(3), 360–364 (2013)

    Article  Google Scholar 

  • Warden, S.J., Galley, M.R., Richard, J.S., George, L.A., Dirks, R.C., Guildenbecher, E.A., Judd, A.M., Robling, A.G., Fuchs, R.K.: Reduced gravitational loading does not account for the skeletal effect of botulinum toxin-induced muscle inhibition suggesting a direct effect of muscle on bone. Bone. 54(1), 98–105 (2013)

    Article  Google Scholar 

  • Witt, F., Duda, G.N., Bergmann, C., Petersen, A.: Cyclic mechanical loading enables solute transport and oxygen supply in bone healing: an in vitro investigation. Tissue Eng. A. 20(3–4), 486–493 (2014)

    Google Scholar 

  • Zhang, P., Hamamura, K., Yokota, H.: A brief review of bone adaptation to unloading. Genomics, Proteomics & Bioinformatics. 6(1), 4–7 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by grants from the National Natural Science Foundation of China (No. 11472033, No.11421202), the national key research and development plan (2016YFC1101101) and supported by the 111 Project (B13003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lianwen Sun or Yubo Fan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All animal treatments were approved by the Animal Care Committee of Beihang University in accordance with the Regulation of Administration of Affairs Concerning Experimental Animals of State Science and Technology Commission of China.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Luan, H., Sun, L. et al. Increased Blood Flow by Unilateral Intermittent Compression on Hindlimbs May Prevent Bone Loss. Microgravity Sci. Technol. 30, 987–993 (2018). https://doi.org/10.1007/s12217-018-9661-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-018-9661-2

Keywords

Navigation