Skip to main content
Log in

Drop Tower Setup for Dynamic Light Scattering in Dense Gas-Fluidized Granular Media

  • ORIGINAL ARTICLE
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

Investigation of dynamics in dense granular media is challenging. Here we present a setup that facilitates gas fluidization of dense granular media in microgravity. The dynamics is characterized using diffusing wave spectroscopy. We demonstrate that agitated granular media reach a steady state within fractions of a second in drop tower flights. The intensity autocorrelation functions obtained in microgravity show a remarkable dependence on sample volume fraction and driving strength. A plateau in correlation emerges at low volume fractions and strong driving, while correlation decays only very slowly but continuously at high packing fractions. The setup allows to independently set sample volume fraction and driving strength, and thus extends the possibilities for investigations on dynamics in dense granular on ground.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Biggs, M.J., Glass, D., Xie, L., Zivkovic, V., Buts, A., Curt Kounders, M.A.: Granular temperature in a gas fluidized bed. Granul. Matter 10, 63–73 (2007)

    Article  Google Scholar 

  • Blum, J., Wurm, G., Kempf, S., Poppe, T., Klahr, H., Kozasa, T., Rott, M., Henning, T., Dorschner, J., Schräpler, R., Keller, H.U., Markiewicz, W.J., Mann, I., Gustafson, B.A.S., Giovane, F., Neuhaus, D., Fechtig, H., Grün, E., Feuerbacher, B., Kochan, H., Ratke, L., El Goresy, A., Morfill, G., Weidenschilling, S.J., Schwehm, G., Metzler, K., Ip, W.-H.: Growth and form of planetary seedlings: Results from a microgravity aggregation experiment. Phys. Rev. Lett. 85, 2426–2429 (2000)

    Article  Google Scholar 

  • Castellanos, A.: The relationship between attractive interparticle forces and bulk behaviour in dry and uncharged fine powders. Adv. Phys. 54, 263–376 (2005)

    Article  Google Scholar 

  • Castellanos, A., Valverde, J., Pérez, A., Ramos, A., Watson, P.: Flow regimes in fine cohesive powders. Phys. Rev. Lett. 82, 1156–1159 (1999)

    Article  Google Scholar 

  • Chen, Y.-P., Evesque, P., Hou, M.-Y.: Breakdown of energy equipartition in vibro-fluidized granular media in micro-gravity. Chinese Phys. Lett. 29, 074501 (2012)

    Article  Google Scholar 

  • Cipelletti, L., Bissig, H., Trappe, V., Ballesta, P., Mazoyer, S.: Time-resolved correlation: a new tool for studying temporally heterogeneous dynamics. J. Phys. Condens. Matter 15, S257–S262 (2003)

    Article  Google Scholar 

  • Eshuis, P., van der Weele, K., van der Meer, D., Bos, R., Lohse, D.: Phase diagram of vertically shaken granular matter. Phys. Fluids 19, 123301 (2007)

    Article  MATH  Google Scholar 

  • Evesque, P.: Microgravity and Dissipative Granular Gas in a vibrated container: a gas with an asymmetric speed distribution in the vibration direction, but with a null mean speed everywhere. Poudres & Grains 18, 1–19 (2010)

    Google Scholar 

  • Goldman, D., Swinney, H.: Signatures of glass formation in a fluidized bed of hard spheres. Phys. Rev. Lett. 96, 145702 (2006)

    Article  Google Scholar 

  • Grace, J.R., Leckner, B., Zhu, J., Cheng, Y.: Fluidized Beds. In: Crowe, C.T. (ed.) Multiphase Flow Handbook, pp. 5,1–93. CRC Press (2006)

  • Greenspan, L.: Humidity fixed points of binary saturated aqueous solutions. J. Res. Natl. Bur. Stand. Sect. A Phys. Chem. 81A, 89 (1977)

    Article  MathSciNet  Google Scholar 

  • Guardiola, J., Rojo, V., Ramos, G.: Influence of particle size, fluidization velocity and relative humidity on fluidized bed electrostatics. J. Electrostat. 37, 1–20 (1996)

    Article  Google Scholar 

  • Harth, K., Kornek, U., Trittel, T., Strachauer, U., Höme, S., Will, K., Stannarius, R.: Granular gases of rod-shaped grains in microgravity. Phys. Rev. Lett. 110, 144102 (2013)

    Article  Google Scholar 

  • Lemieux, P.-A., Durian, D.J.: Investigating non-Gaussian scattering processes by using nth-order intensity correlation functions. J. Opt. Soc. Am. A 16, 1651 (1999)

    Article  MathSciNet  Google Scholar 

  • Lemieux, P.A., Durian, D.J.: Quasi-elastic light scattering for intermittent dynamics. Appl. Opt. 40, 3984–3994 (2001)

    Article  Google Scholar 

  • Leutz, W., Ricka, J.: On light propagation through glass bead packings. Opt. Commun. 126, 260–268 (1996)

    Article  Google Scholar 

  • Menon, N., Durian, D.J.: Particle motions in a Gas-Fluidized bed of sand. Phys. Rev. Lett. 79, 3407–3410 (1997)

    Article  Google Scholar 

  • Murdoch, N., Rozitis, B., Nordstrom, K., Green, S.F., Michel, P., de Lophem, T.-L., Losert, W.: Convection in microgravity. Phys. Rev. Lett. 110, 018307 (2013)

    Article  Google Scholar 

  • Pine, D.J., Weitz, D.A., Maret, G., Wolf, P.E., Herbolzheimer, E., Chaikin, P.M.: Dynamical correlations of multiply scattered light. In: Sheng, P. (ed.) Scattering and Localization of Classical Waves in Random Media, vol. 8, pp. 312–372. World Scientific Publishing Co. Pte. Ltd, Singapore (1990)

  • Pust, O.: Direct cross-correlation compared with FFT-based cross-correlation. In: Proceedings of the 10Th International Symposium on Applications of Laser Techniques to Fluid Mechanics, vol. 27, pp. 114–126 (2000)

  • Reinhold, S.: Lichtstreuung an Getriebenen Granularen Medien. Diploma Thesis, Bonn University (2012)

  • Saluena, C., Pöschel, T.: Convection in horizontally shaken granular material. Eur. Phys. J. E - Soft Matter 1, 55–59 (2000)

    Article  Google Scholar 

  • Siegl, M., Kargl, F., Scheuerpflug, F., Drescher, J., Neumann, C., Balter, M., Kolbe, M., Sperl, M., Yu, P., Meyer, A.: Material Physics Rockets MAPHEUS-3/4: Flights and Developments. In: Proceedings of the 21St ESA Symposium on European Rocket and Balloon Programmes and Related Research, No. 1, pp. 1–5 (2013)

  • Sperl, M., Kranz, W.T., Zippelius, A.: Single-particle dynamics in dense granular fluids under driving. Europhys. Lett. 98, 28001 (2012)

    Article  Google Scholar 

  • Xie, L., Biggs, M.J., Glass, D., McLeod, A.S., Egelhaaf, S.U., Petekidis, G.: Granular temperature distribution in a gas fluidized bed of hollow microparticles prior to onset of bubbling. Europhys. Lett. 74, 268–274 (2006)

    Article  Google Scholar 

  • Yu, P., Frank-Richter, S., Börngen, A., Sperl, M.: Monitoring three-dimensional packings in microgravity. Granul. Matter 16, 165–173 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the team from the ZARM Drop Tower Operation and Service Company (ZARM FAB mbH) for valuable technical support during the finalization of the setup and the measurement campaign. The European Space Agency is acknowledged for providing access to the drop tower by ESA-AO-2009-0943 ‘Compaction and Sound Transmission in Granular Media’. Financial support by DFG research unit FOR 1394 is gratefully acknowledged. P. B. thanks Andreas Meyer for his continued support of the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Born.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Born, P., Schmitz, J., Bußmann, M. et al. Drop Tower Setup for Dynamic Light Scattering in Dense Gas-Fluidized Granular Media. Microgravity Sci. Technol. 28, 413–420 (2016). https://doi.org/10.1007/s12217-016-9496-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-016-9496-7

Keywords

Navigation