Skip to main content
Log in

Hilbert squares of degeneracy loci

  • Published:
Rendiconti del Circolo Matematico di Palermo Series 2 Aims and scope Submit manuscript

Abstract

Let S be the first degeneracy locus of a morphism of vector bundles corresponding to a general matrix of linear forms in \({\mathbb {P}}^s\). We prove that, under certain positivity conditions, its Hilbert square \({{\mathrm{Hilb}}}^2(S)\) is isomorphic to the zero locus of a global section of an irreducible homogeneous vector bundle on a product of Grassmannians. Our construction involves a naturally associated Fano variety, and an explicit description of the isomorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beauville, A., Donagi, R.: La variété des droites d’une hypersurface cubique de dimension 4. CR Acad. Sci. Paris Sér. I Math. 301(14), 703–706 (1985)

    MATH  Google Scholar 

  2. Belmans, P.: Fanography, An online database available at www.fanography.infofanography.info

  3. Benedetti, V.: Sous-variétés spéciales des espaces homogènes, Ph.D. thesis, Aix-Marseille (2018)

  4. Bernardara, M., Fatighenti, E., Manivel, L.: Nested varieties of K3 type. Journal de l’École polytechnique — Mathématiques 8, 733–778 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bernardara, M., Fatighenti, E., Manivel, L., Tanturri, F.: Fano fourfolds of K3 type, arXiv:2111.13030 (2021)

  6. Cayley, A.: A memoir on quartic surfaces. Proc. Lond. Math. Soc. 1(1), 19–69 (1869)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ciliberto, C., Zaidenberg, M.: Lines, conics, and all that, arXiv:1910.11423 (2019)

  8. Coates, T., Corti, A., Galkin, S., Kasprzyk, A.: Quantum periods for 3-dimensional Fano manifolds. Geom. Topol. 20(1), 103–256 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. De Biase, L., Fatighenti, E., Tanturri, F.: Fano 3-folds from homogeneous vector bundles over Grassmannians. Revista Matemática Complutense, 1–62 (2021)

  10. Debarre, O., Voisin, C.: Hyper-Kähler fourfolds and Grassmann geometry. J. Reine Angew. Math. 649, 63–87 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Fatighenti, E., Mongardi, G.: Fano varieties of k3-type and ihs manifolds. Int. Math. Res. Not. 2021(4), 3097–3142 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Festi, D., Garbagnati, A., Van Geemen, B., Van Luijk, R.: The Cayley-Oguiso automorphism of positive entropy on a K3 surface. J. Mod. Dyn. 7(1), 75 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Göttsche, L.: On the motive of the Hilbert scheme of points on a surface. Math. Res. Lett. 8, 613–627 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gusein-Zade, S.M., Luengo, I., Melle-Hernández, A.: Power structure over the Grothendieck ring of varieties and generating series of Hilbert schemes of points. Mich. Math. J. 54(2), 353–359 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hauenstein, J.D., Manivel, L., Szendrői, B.: On the equations defining some Hilbert schemes. Vietnam J. Math. 50, 487–500 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  16. Iliev, A., Manivel, L.: Hyperkaehler manifolds from the Tits-Freudenthal magic square. Eur. J. Math. 5(4), 1139–1155 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Katz, S.: The cubo-cubic transformation of \(\mathbb{P} ^3\) is very special. Math. Z. 195(2), 255–257 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kiem, Y.-H., Kim, I.-K., Lee, H., Lee, K.-S.: All complete intersection varieties are Fano visitors. Adv. Math. 311, 649–661 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kuznetsov, A.: Küchle fivefolds of type c5. Math. Z. 284(3–4), 1245–1278 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lopez, A.F.: Noether–Lefschetz theory and the Picard group of projective surfaces. Am. Math. Soc. 438 (1991)

  21. Mori S., Mukai, S.: Classification of Fano 3-folds with \(B_2\ge 2\). I, Algebraic and topological theories—to the memory of Dr. Takehiko Miyata (Kinokuniya, Tokyo) (M. Nagata et al., ed.), pp. 496–595 (1985)

  22. Noether, M.: Ueber die eindeutigen raumtransformationen. insbesondere in ihrer anwendung auf die abbildung algebraischer flächen. Mathematische Annalen 3(4), 547–580 (1871)

    Article  MathSciNet  MATH  Google Scholar 

  23. Oguiso, K.: Smooth quartic K3 surfaces and Cremona transformations, ii, arXiv:1206.5049

  24. Oguiso, K.: Isomorphic quartic K3 surfaces in the view of Cremona and projective transformations. Taiwan. J. Math. 21(3), 671–688 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ottaviani, G.: On 3-folds in \(\mathbb{P} ^5\) which are scrolls. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 19(3), 451–471 (1992)

    MathSciNet  MATH  Google Scholar 

  26. Ottaviani, G.: Some constructions of projective varieties, http://web.math.unifi.it/users/ottaviani/bcn.pdfOnline Lectures (2005)

  27. Pragacz, P.: Enumerative geometry of degeneracy loci. Annales scientifiques de l’École Normale Supérieure Ser. 4, 21(3), 413–454 (1988)

  28. Reede, F.: The cubo-cubic transformation and K3 surfaces. Res. Math. 74(4), 1–7 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ricolfi, A.T.: On the motive of the Quot scheme of finite quotients of a locally free sheaf. J. Math. Pures Appl. 144, 50–68 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tanturri, F.: On degeneracy loci of morphisms between vector bundles, Ph.D. thesis (2013)

  31. Veniani, D.C.: Symmetries and equations of smooth quartic surfaces with many lines. Revista Matemática Iberoamericana 36(1), 233–256 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. White, F.P.: On certain nets of plane curves. Proc. Camb. Philos. Soc. 22, 1–10 (1923)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to Kieran O’Grady and Claudio Onorati for useful discussions on the subject of this paper. The first three authors are members of INDAM-GNSAGA. The authors have been partially supported by PRIN2017 2017YRA3LK and PRIN2020 2020KKWT53.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Fatighenti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Euler characteristic of Hilbert squares

The goal of this appendix is to give a detailed proof of Proposition 2.4. We shall exploit a nontrivial Chern class calculation on (smooth) degeneracy loci following Pragacz [27].

Fix \(m = 1\) throughout this section. Let \(s \in \{3,4\}\), and consider, as ever, a general map \(\varphi :{\mathcal {F}} \rightarrow {\mathcal {E}}\) between vector bundles \({\mathcal {F}}={\mathcal {O}}_{{\mathbb {P}}^s}^{\oplus n+1}\) and \({\mathcal {E}}={\mathcal {O}}_{{\mathbb {P}}^s}(1)^{\oplus n}\). The k-th degeneracy locus of \(\varphi\) is the closed subscheme \(D_k(\varphi ) \subset {\mathbb {P}}^s\) defined by the condition \({{\,\mathrm{rank}\,}}(\varphi ) \le k\), which is (locally) equivalent to the vanishing of the \((k+1)\)-minors of \(\varphi\). We are interested in the case \(k=n-1\), which leads to \(D_{n-2}(\varphi )\) of expected codimension 6, and \(D_{n-1}(\varphi )\) of expected codimension 2. Since \(\varphi\) is general, we have \(D_{n-2}(\varphi )=\emptyset\), so that \(D_{n-1}(\varphi ) \subset {\mathbb {P}}^s\) is a smooth subvariety of codimension 2. In the case \(s=4\), we shall denote it by \(S_n \subset {\mathbb {P}}^4\), whereas in the case \(s=3\) we shall denote it by \(C_n \subset {\mathbb {P}}^3\).

We start assuming \(s=4\), the case \(s=3\) being essentially a truncation of the case \(s=4\). Let \(H \in A^1({\mathbb {P}}^4)\) denote the first Chern class of \({\mathcal {O}}_{{\mathbb {P}}^4}(1)\). The ordinary Segre class of \({\mathcal {E}}\) is the class

$$\begin{aligned} {{\widetilde{s}}}({\mathcal {E}}) = \sum _{0\le i\le 4}\widetilde{s}_i({\mathcal {E}}) = (1+H)^{-n}, \end{aligned}$$

with \({{\widetilde{s}}}_i({\mathcal {E}}) \in A^i({\mathbb {P}}^4) = {\mathbb {Z}}[H^i]\) sitting in codimension i. Inverting the Chern class

$$\begin{aligned} c({\mathcal {E}}) = 1+nH+\left( {\begin{array}{c}n\\ 2\end{array}}\right) H^2+\left( {\begin{array}{c}n\\ 3\end{array}}\right) H^3+\left( {\begin{array}{c}n\\ 4\end{array}}\right) H^4 \end{aligned}$$

we find

$$\begin{aligned} {{\widetilde{s}}}_1({\mathcal {E}})&= -c_1({\mathcal {E}})=-nH \\ {{\widetilde{s}}}_2({\mathcal {E}})&= s_1({\mathcal {E}})^2-c_2({\mathcal {E}}) = \left[ n^2-\left( {\begin{array}{c}n\\ 2\end{array}}\right) \right] H^2\\ {{\widetilde{s}}}_3({\mathcal {E}})&= -s_1({\mathcal {E}})c_2({\mathcal {E}})-s_2({\mathcal {E}})c_1({\mathcal {E}})-c_3({\mathcal {E}}) = \left[ -n^3-\left( {\begin{array}{c}n\\ 3\end{array}}\right) +2n\left( {\begin{array}{c}n\\ 2\end{array}}\right) \right] H^3\\ {{\widetilde{s}}}_4({\mathcal {E}})&= -s_1({\mathcal {E}})c_3({\mathcal {E}})-s_2({\mathcal {E}})c_2({\mathcal {E}})-s_3({\mathcal {E}})c_1({\mathcal {E}})-c_4({\mathcal {E}}) \\&= \left[ n^4+2n\left( {\begin{array}{c}n\\ 3\end{array}}\right) -3n^2\left( {\begin{array}{c}n\\ 2\end{array}}\right) +\left( {\begin{array}{c}n\\ 2\end{array}}\right) ^2-\left( {\begin{array}{c}n\\ 4\end{array}}\right) \right] H^4. \end{aligned}$$

We set \(s_i = (-1)^i \widetilde{s_i}({\mathcal {E}})\) for \(0\le i\le 4\). Then, unraveling [27, Example 5.8 (ii)], we have, for the smooth surface \(S_n \subset {\mathbb {P}}^4\), an identity

$$\begin{aligned} e_{\mathrm {top}}(S_n) = s_2c_2({\mathbb {P}}^4)-\left[ s_{(2,1)}+2s_3\right] c_1({\mathbb {P}}^4)+s_{(2,1,1)}+3s_{(3,1)}+3s_4, \end{aligned}$$
(7.1)

given the Schur polynomials

$$\begin{aligned} s_{(2,1)}&= \begin{vmatrix} s_2&s_3 \\ s_0&s_1 \end{vmatrix} = \begin{vmatrix} s_2&s_3 \\ 1&s_1 \end{vmatrix} = s_2s_1-s_3 \\ s_{(3,1)}&= \begin{vmatrix} s_3&s_4 \\ s_0&s_1 \end{vmatrix} = \begin{vmatrix} s_3&s_4 \\ 1&s_1 \end{vmatrix} = s_3s_1-s_4\\ s_{(2,1,1)}&= \begin{vmatrix} s_2&s_3&s_4 \\ s_0&s_1&s_2 \\ 0&s_0&s_1 \end{vmatrix} = \begin{vmatrix} s_2&s_3&s_4 \\ 1&s_1&s_2 \\ 0&1&s_1 \end{vmatrix}=s_2(s_1^2-s_2)-(s_1s_3-s_4). \end{aligned}$$

Expanding, we obtain

$$\begin{aligned} s_2c_2({\mathbb {P}}^4)&= 10n^2-10\left( {\begin{array}{c}n\\ 2\end{array}}\right) \\ \left[ s_{(2,1)} + 2s_3\right] c_1({\mathbb {P}}^4)&= 5(s_2s_1+s_3)H = 10n^3 - 15n\left( {\begin{array}{c}n\\ 2\end{array}}\right) +5\left( {\begin{array}{c}n\\ 3\end{array}}\right) \\ s_{(2,1,1)}&= n\left( {\begin{array}{c}n\\ 3\end{array}}\right) -\left( {\begin{array}{c}n\\ 4\end{array}}\right) \\ 3s_{(3,1)}&= \left( {\begin{array}{c}n\\ 2\end{array}}\right) \left[ 3n^2-3\left( {\begin{array}{c}n\\ 2\end{array}}\right) \right] -3n\left( {\begin{array}{c}n\\ 3\end{array}}\right) +3\left( {\begin{array}{c}n\\ 4\end{array}}\right) \\ 3s_4&= 3n^4+6n\left( {\begin{array}{c}n\\ 3\end{array}}\right) -9n^2\left( {\begin{array}{c}n\\ 2\end{array}}\right) +3\left( {\begin{array}{c}n\\ 2\end{array}}\right) ^2-3\left( {\begin{array}{c}n\\ 4\end{array}}\right) . \end{aligned}$$

Formula (7.1) then yields

$$\begin{aligned} e_{\mathrm {top}}(S_n) =n^2(10-10n+3n^2)+\left( {\begin{array}{c}n\\ 2\end{array}}\right) (-10+15n-6n^2)+\left( {\begin{array}{c}n\\ 3\end{array}}\right) (4n-5)-\left( {\begin{array}{c}n\\ 4\end{array}}\right) . \end{aligned}$$

In the case of a smooth determinantal curve \(C_n \subset {\mathbb {P}}^3\), i.e. when we set \(s=3\), we only need to use

$$\begin{aligned} s_0=1,\quad s_1=nH,\quad s_2 = \left[ n^2-\left( {\begin{array}{c}n\\ 2\end{array}}\right) \right] H^2,\quad s_3= \left[ n^3+\left( {\begin{array}{c}n\\ 3\end{array}}\right) -2n\left( {\begin{array}{c}n\\ 2\end{array}}\right) \right] H^3. \end{aligned}$$

In this case, [27, Example 5.8 (i)] gives

$$\begin{aligned} e_{\mathrm {top}}(C_n)&= s_2c_1({\mathbb {P}}^3)-s_{(2,1)}-2s_3 = 4Hs_2 - (s_2s_1-s_3) -2s_3 = 4Hs_2 - s_2s_1 - s_3 \\&= 4n^2-4\left( {\begin{array}{c}n\\ 2\end{array}}\right) -n^3+n\left( {\begin{array}{c}n\\ 2\end{array}}\right) -n^3-\left( {\begin{array}{c}n\\ 3\end{array}}\right) +2n\left( {\begin{array}{c}n\\ 2\end{array}}\right) \\&= 4n^2-2n^3+(3n-4)\left( {\begin{array}{c}n\\ 2\end{array}}\right) -\left( {\begin{array}{c}n\\ 3\end{array}}\right) . \end{aligned}$$

The formulas for \(e_{\mathrm {top}}(S_n)\) and \(e_{\mathrm {top}}(C_n)\) prove Proposition 2.4.

Appendix 2: Hodge–Deligne polynomial of Hilbert squares

We again set \(m=1\) throughout this section. We shall consider once more smooth (sub-determinantal) degeneracy loci \(S = D_{n-1}(\varphi )\subset {\mathbb {P}}^s\) (of dimension 2 or 3), and we shall compute the Hodge–Deligne polynomial

$$\begin{aligned} E({{\,\mathrm{Hilb}\,}}^2(S);u,v) = \sum _{p,q\ge 0}h^{p,q}({{\,\mathrm{Hilb}\,}}^2(S))(-u)^p(-v)^q \,\in \,{\mathbb {Z}}[u,v] \end{aligned}$$

via standard motivic techniques, exploiting the power structure on the Grothendieck ring of varieties \(K_0({{\,\mathrm{Var}\,}}_{{\mathbb {C}}})\) [14], as well as our knowledge of the Hodge numbers of S (cf. Sect. 3).

1.1 2.1. Surface case: \((s,n,m)=(4,4,1)\)

Let us consider the smooth determinantal surface \(S_4 = D_{3}(\varphi ) \subset {\mathbb {P}}^4\). By Göttsche’s formula [13] for the motive of the Hilbert scheme of points on a surface, combined with the main result of [14], there is an identity

$$\begin{aligned} \sum _{n\ge 0}\left[ {{\,\mathrm{Hilb}\,}}^n (S_4)\right] q^n = \prod _{n>0}\left( 1-{\mathbb {L}}^{n-1}q^n \right) ^{-[S_4]} \end{aligned}$$

in \(K_0({{\,\mathrm{Var}\,}}_{{\mathbb {C}}})\llbracket q \rrbracket\), where exponentiation is to be thought of in the language of power structures. The Hodge–Deligne polynomial of a smooth projective \({\mathbb {C}}\)-variety Y is the polynomial

$$\begin{aligned} E(Y;u,v) = \sum _{p,q \ge 0}h^{p,q}(Y) (-u)^p(-v)^q \,\in \,\mathbb Z[u,v]. \end{aligned}$$

We have, on \({\mathbb {Z}}[u,v]\), the power structure defined by the identity

$$\begin{aligned} \left( 1-q\right) ^{-f(u,v)} = \prod _{i,j}\left( 1-u^iv^jq\right) ^{-p_{ij}} \end{aligned}$$

if \(f(u,v) = \sum _{i,j}p_{ij}u^iv^j\). Looking at the Hodge diamond depicted in Sect. 3.2, we deduce

$$\begin{aligned} E(S_4;u,v) = 1+4u^2+45uv+4v^2+u^2v^2, \end{aligned}$$

and since \(E(-)\) defines a morphism \(K_0({{\,\mathrm{Var}\,}}_{{\mathbb {C}}}) \rightarrow {\mathbb {Z}}[u,v]\) of rings with power structure sending \({\mathbb {L}}\mapsto uv\), we have an identity

$$\begin{aligned} \sum _{n\ge 0} E({{\,\mathrm{Hilb}\,}}^n(S_4);u,v) q^n&= \prod _{n>0} \left( 1-u^{n-1}v^{n-1}q^n \right) ^{-E(S_4;u,v)} \\&= \prod _{n>0} \left( 1-q\right) ^{-E(S_4;u,v)}\big |_{q \mapsto u^{n-1}v^{n-1}q^n} \\&= \prod _{n>0} \left( 1-u^{n-1}v^{n-1}q^n\right) ^{-1} \left( 1-u^{n+1}v^{n-1}q^n \right) ^{-4}\cdot \\&\qquad \qquad \cdot \left( 1-u^{n}v^{n}q^n \right) ^{-45}\left( 1-u^{n-1}v^{n+1}q^n \right) ^{-4}\left( 1-u^{n+1}v^{n+1}q^n \right) ^{-1} \end{aligned}$$

where the substitution \(q \mapsto u^{n-1}v^{n-1}q^n\) is possible thanks to the properties of a power structure.

Expanding and isolating the coefficient of \(q^2\) gives

$$\begin{aligned} E({{\,\mathrm{Hilb}\,}}^2(S_4);u,v)= & {} 1+46uv+4(u^2+v^2)+1097u^2v^2+184(uv^3+u^3v)+10(u^4+v^4)\\+ & {} 46u^3v^3+4(u^4v^2+u^2v^4) +u^4v^4, \end{aligned}$$

in full agreement with the Hodge diamond depicted in Sect. 3.2.

1.2 2.2. Threefold case: \((s,n,m)=(5,5,1)\)

In the case \((s,n,m)=(5,5,1)\), we obtain a smooth threefold \(S_{5,5,1} \subset {\mathbb {P}}^5\) outside the ‘good range’ of Theorem A, cf. Example 7.5. There is an identity [14, 29]

$$\begin{aligned} {\mathsf {Z}}_{S_{5,5,1}}(q) = \sum _{n\ge 0}\,\left[ {{\,\mathrm{Hilb}\,}}^n(S_{5,5,1})\right] q^n=\left( \sum _{n\ge 0}\,\bigl [{{\,\mathrm{Hilb}\,}}^n({\mathbb {A}}^3)_0\bigr ]q^n\right) ^{[S_{5,5,1}]} \end{aligned}$$

in \(K_0({{\,\mathrm{Var}\,}}_{{\mathbb {C}}})\llbracket q \rrbracket\), where \({{\,\mathrm{Hilb}\,}}^n({\mathbb {A}}^3)_0\) denotes the punctual Hilbert scheme, namely the subscheme of \({{\,\mathrm{Hilb}\,}}^n({\mathbb {A}}^3)\) parametrising subschemes entirely supported at the origin \(0 \in {\mathbb {A}}^3\). Let us define classes \(\Omega _n \in K_0({{\,\mathrm{Var}\,}}_{{\mathbb {C}}})\) via the relation

$$\begin{aligned} \sum _{n\ge 0}\bigl [{{\,\mathrm{Hilb}\,}}^n({\mathbb {A}}^3)_0\bigr ]q^n = {{\,\mathrm{Exp}\,}}\left( \sum _{n>0}\Omega _nq^n\right) =\prod _{n>0}\,\left( 1-q^n\right) ^{-\Omega _n}. \end{aligned}$$

Since \({{\,\mathrm{Hilb}\,}}^1({\mathbb {A}}^3)_0={{\,\mathrm{Spec}\,}}{\mathbb {C}}\) and \({{\,\mathrm{Hilb}\,}}^2(\mathbb A^3)_0 = {\mathbb {P}}^2\), one can easily compute \(\Omega _1=1\) and \(\Omega _2={\mathbb {L}}+{\mathbb {L}}^2\). Therefore

$$\begin{aligned} {\mathsf {Z}}_{S_{5,5,1}}(q) = \prod _{n>0}\, \left( 1-q^n\right) ^{-\Omega _n[S_{5,5,1}]}, \end{aligned}$$

which implies

$$\begin{aligned} \sum _{n\ge 0}E({{\,\mathrm{Hilb}\,}}^n(S_{5,5,1});u,v)q^n = \prod _{n>0}\, \left( 1-q^n\right) ^{-E(\Omega _n;u,v)E(S_{5,5,1};u,v)}. \end{aligned}$$
(B.1)

One can compute the Hodge–Deligne polynomial of \(S_{5,5,1}\) to be

$$\begin{aligned} E(S_{5,5,1};u,v) = 1+2uv+2u^2v^2+u^3v^3-(5u^3+151u^2v+151uv^2+5v^3), \end{aligned}$$

so that extracting the coefficient of \(q^2\) from (B.1), one obtains

$$\begin{aligned} E({{\,\mathrm{Hilb}\,}}^2(S_{5,5,1});u,v)= & {} \left[ \frac{(1-u^3q)^5(1-v^3q)^5(1-uv^2q)^{151}(1-u^2vq)^{151}}{(1-q)(1-uvq)^2(1-u^2v^2q)^2(1-u^3v^3q)}\right] _{q^2}\\+ & {} (uv+u^2v^2)E(S_{5,5,1};u,v). \end{aligned}$$

In particular, the topological Euler characteristic is

$$\begin{aligned} e_{\mathrm {top}}({{\,\mathrm{Hilb}\,}}^2(S_{5,5,1})) = E({{\,\mathrm{Hilb}\,}}^2(S_{5,5,1});1,1) = 46053 = e_{\mathrm {top}}(Z_{5,5,1})-105. \end{aligned}$$

1.3 B.3. Threefold case: \((s,n,m)=(5,6,1)\)

In the case \((s,n,m)=(5,6,1)\), we get a smooth threefold \(S_{5,6,1} \subset {\mathbb {P}}^5\). Using the Hodge diamond depicted in Sect. 3.3, one has

$$\begin{aligned} E(S_{5,6,1};u,v)=1+2uv+2u^2v^2+u^3v^3-(29u^3+520u^2v+520uv^2+29v^3). \end{aligned}$$

Formula (B.1) applied to this case yields

$$\begin{aligned} E({{\,\mathrm{Hilb}\,}}^2(S_{5,6,1});u,v)= & {} \left[ \frac{(1-u^3q)^{29}(1-v^3q)^{29}(1-uv^2q)^{520}(1-u^2vq)^{520}}{(1-q)(1-uvq)^2(1-u^2v^2q)^2(1-u^3v^3q)}\right] _{q^2}\\+ & {} (uv+u^2v^2)E(S_{5,6,1};u,v). \end{aligned}$$

In particular,

$$\begin{aligned} e_{\mathrm {top}}({{\,\mathrm{Hilb}\,}}^2(S_{5,6,1})) = E({{\,\mathrm{Hilb}\,}}^2(S_{5,6,1});1,1) = 593502, \end{aligned}$$

in complete agreement with what one gets out of the Hodge diamond for Z depicted in Sect. 3.3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatighenti, E., Meazzini, F., Mongardi, G. et al. Hilbert squares of degeneracy loci. Rend. Circ. Mat. Palermo, II. Ser 72, 3153–3183 (2023). https://doi.org/10.1007/s12215-022-00832-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12215-022-00832-w

Keywords

Navigation