Skip to main content
Log in

Complex dynamics of a prey-predator interaction model with Holling type-II functional response incorporating the effect of fear on prey and non-linear predator harvesting

  • Published:
Rendiconti del Circolo Matematico di Palermo Series 2 Aims and scope Submit manuscript

Abstract

In the present article, we have investigated the impact of the fear effect and non-linear predator harvesting in a prey-predator interaction model with Holling type-II functional response. Fear for predator population enhances the survival probability of prey population, and it can greatly reduce the reproduction of prey population. We have investigated all the biologically feasible equilibrium points and the positivity and boundedness of the system solutions. We have analyzed the local and global stability of the feasible equilibrium points in terms of the model parameters. Analytically we have established that the intrinsic growth rate of the prey population can stabilize the prey-predator interactions by ignoring the existence of periodic behaviors. The model system undergoes through Transcritical, Saddle-Node, Hopf bifurcation by considering the intrinsic growth rate of the prey population as a bifurcation parameter and Bogdanov–Takens bifurcation with respect to the prey intrinsic growth rate and rate of predator harvesting. Numerically we have identified two parametric planes, which are divided into sub-regions associated with different numbers and nature of the equilibrium points by various bifurcation curves. We also found that the system may exhibit bi-stability behavior by producing stable axial and interior equilibrium points. Lastly, the manuscript is concluded with some recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Meng, X., Liu, R., Zhang, T.: Adaptive dynamics for a non-autonomous Lotka–Volterra model with size-selective disturbance. Nonlinear Anal. Real World Appl. 16, 202–213 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Morozov, A., Petrovskii, S., Li, B.: Bifurcations and chaos in a predator-prey system with the Allee effect. Proc. R. Soc. Lond. B Biol. Sci. 271, 1407–1414 (2004)

    Google Scholar 

  3. Zhang, T., Zang, H.: Delay-induced Turing instability in reaction–diffusion equations. Phys. Rev. E. 90, 052908 (2014)

    Google Scholar 

  4. Panday, P., Pal, N., Samanta, S., Chattopadhyay, J.: Stability and bifurcation analysis of a three-species food chain model with fear. Int. J. Bifurc. Chaos. 28, 1850009 (2018)

    MathSciNet  MATH  Google Scholar 

  5. Prasad, K.D., Prasad, B.S.: Qualitative analysis of additional food provided predator-prey system with anti-predator behaviour in prey. Nonlinear Dyn. 96, 1765–1793 (2019)

    MATH  Google Scholar 

  6. Murray, J.: Mathematical Biology II: Spatial Models and Biomedical Applications, 3rd edn. Springer (2003)

  7. Holmes, E., Lewis, M., Banks, J., Veit, R.: Partial differential equations in ecology: spatial interactions and population dynamics. Ecology 75, 17–29 (1994)

    Google Scholar 

  8. Wang, W., Zhang, Y., Liu, C.: Analysis of a discrete-time predator-prey system with Allee effect. Ecol. Compl. 8, 81–85 (2011)

    Google Scholar 

  9. Yin, C., Cheng, Y., Chen, Y., Stark, B., Zhong, S.: Adaptive fractional-order switching-type control method design for 3D fractional-order nonlinear systems. Nonlinear Dyn. 82, 39–52 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Perc, M., Szolnoki, A., Szabo, G.: Cyclical interactions with alliance-specific heterogeneous invasion rates. Phys. Rev. E. 75, 052102 (2007)

    Google Scholar 

  11. Malthus, T.: An Essay on the Principle of Population. J. Johnson, St. Paul’s Church-Yard, London (1978)

  12. Lotka, A.J.: Elements of Physical Biology. Williams and Wilkins, Baltimore (1925)

    MATH  Google Scholar 

  13. Volterra, V.: Variazione e fluttuazioni del numero d’individui in specie animali conviventi. Memorie della Reale Accademia Nazionale dei Lincei. 6, 31–113 (1926)

    MATH  Google Scholar 

  14. Holling, C.S.: The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Can. Entomol. 91, 293–320 (1959)

    Google Scholar 

  15. Hastings, A., Powell, T.: Chaos in three-species food chain. Ecology 72, 896–903 (1991)

    Google Scholar 

  16. Song, Z., Zhen, B., Xu, J.: Species coexistence and chaotic behavior induced by multiple delays in a food chain system. Ecol. Compl. 19, 9–17 (2014)

    Google Scholar 

  17. Debnath, S., Ghosh, U., Sarkar, S.: Global dynamics of a tritrophic food chain model subject to the Allee effects in the prey population with sexually reproductive generalized-type top predator. Comp. Math Methods 1079, e1079 (2019)

    MathSciNet  Google Scholar 

  18. Hassell, M.P., Lawton, J.H., Beddington, J.R.: Sigmoid functional responses by invertebrate predators and parasitoids. J. Anim. Ecol. 46, 249–262 (1977)

    Google Scholar 

  19. Ghosh, K., Biswas, S., Samanta, S., Tiwari, P.K., Alshomrani, A.S., Chattopadhyay, J.: Effect of multiple delays in an eco-epidemiological model with strong Allee effect. Int. J. Bifurc. Chaos. 27, 175016-1–397 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Saifuddin, M., Samanta, S., Biswas, S., Chattopadhyay, J.: An eco-epidemiologicalmodel with different competition coefficients and strong-Allee in the prey. Int. J. Bifurc. Chaos. 27, 173002-1–237 (2017)

    MATH  Google Scholar 

  21. Feng, P., Kang, Y.: Dynamics of a modified Leslie–Gower model with double Allee effects. Nonlinear Dyn. 80, 1051–1062 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Altendorf, K.B., Laundre, J.W., Gonzalez, C.A.L., Brown, J.S.: Assessing effects of predation risk on foraging behavior of mule deer. J. Mammal. 82, 430–439 (2001)

    Google Scholar 

  23. Creel, S., Christianson, D., Liley, S., Winnie, J.A.: Predation risk affects reproductive physiology and demography of elk. Science 315, 960 (2007)

    Google Scholar 

  24. Creel, S., Christianson, D.: Relationships between direct predation and risk effects. Trends Ecol. Evol. 23, 194 (2008)

    Google Scholar 

  25. Zanette, L.Y., White, A.F., Allen, M.C., Clinchy, M.: Perceived predation risk reduces the number of offspring songbirds produce per year. Science 334, 1398–1401 (2011)

    Google Scholar 

  26. Suraci, J.P., Clinchy, M., Dill, L.M., Roberts, D., Zanette, L.Y.: Fear of large carnivores causes a trophic cascade. Nat. Commun. 7, 10698 (2016)

    Google Scholar 

  27. Candolin, U.: Reproduction under predation risk and the trade-off between current and future reproduction in the threespine stickleback. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 265, 1171–1175 (1998)

    Google Scholar 

  28. Xiao, Y., Chen, L.: Modeling and analysis of a predator-prey model with disease in the prey. Math. Biosci. 171, 59–82 (2001)

    MathSciNet  MATH  Google Scholar 

  29. Xu, C., Li, Z.: Influence of intraspecific density dependence on a three-species food chain with and without external stochastic disturbances. Ecol. Model. 155, 71–83 (2002)

    Google Scholar 

  30. Ghosh, U., Sarkar, S., Mondal, B.: Study of stability and bifurcation of three species food chain model with non-monotone functional response. Int. J. Appl. Comput. Math. 7(3), 1–24 (2021)

    MathSciNet  MATH  Google Scholar 

  31. Beddington, J.R.: Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44(1), 331–340 (1975)

    Google Scholar 

  32. Chowdhury, T., Chakraborty, S., Chattopadhyay, J.: Migratory effect of middle predator in a tritrophic food chain model. Math. Meth. Appl. Sci. 33, 1699–1711 (2010)

    MATH  Google Scholar 

  33. Wang, X., Zanette, L., Zou, X.: Modelling the fear effect in predator-prey interactions. J. Math. Biol. 73, 1179–1204 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Clark, C.W.: Mathematical models in the economics of renewable resources. SIAM Rev. 21, 81–99 (1979)

    MathSciNet  MATH  Google Scholar 

  35. Krishna, S.V., Srinivasu, P.D.N., Kaymackcalan, B.: Conservation of an ecosystem through optimal taxation. Bull. Math. Biol. 60, 569–584 (1998)

    MATH  Google Scholar 

  36. Clark, C.W., De Pree, J.D.: A simple linear model for optimal exploitation of renewable resources. J. Appl. Math. Optim. 5, 181–196 (1979)

    MathSciNet  MATH  Google Scholar 

  37. Clark, C.W.: Mathematical Bieconomic: The Optimal Management of Renewable Resources. Princeton University Press (1976)

  38. Clark, C.W.: Bieconomic Modelling and Fisheries Management. Wiley, New York (1985)

    Google Scholar 

  39. Das, T., Mukherjee, R.N., Chaudhari, K.S.: Bioeconomic harvesting of a prey-predator fishery. J. Biol. Dyn. 3, 447–462 (2009)

    MathSciNet  MATH  Google Scholar 

  40. Xiao, S., Ruan, S.: Bogdanov-Takens bifurcations in predator-prey systems with constant rate harvesting. Fields Inst. Commun. 21, 493–506 (1999)

    MathSciNet  MATH  Google Scholar 

  41. Srinivasu, P.D.N.: Bioeconomics of a renewable resource in presence of a predator. Nonlinear Anal. Real World Appl. 2, 497–506 (2001)

    MathSciNet  MATH  Google Scholar 

  42. Zhang, N., Chen, F., Su, Q., Wu, T.: Dynamic behaviours of a harvesting Leslie-Gower predator-prey model. Discrete Dyn. Nat. Soc. 10(1155), 473–949 (2011)

    MATH  Google Scholar 

  43. Dai, G., Tang, M.: Coexistence region and global dynamics of a harvesting predator-prey system. SIAM J. Appl. Math. 58, 193–210 (1998)

    MathSciNet  MATH  Google Scholar 

  44. Barman, D., Roy, J., Alrabaiah, H., Panja, P., Prasad Mondal, S., Alam, S.: Impact of predator incited fear and prey refuge in a fractional order prey predator model. Chaos Solitons Fractals 142, 110240 (2021)

    MathSciNet  MATH  Google Scholar 

  45. Sasmal, S.K.: Population dynamics with multiple Allee effects induced by fear factors: a mathematical study on prey-predator interactions. Appl. Math. Model. 64, 1–14 (2018)

    MathSciNet  MATH  Google Scholar 

  46. La-Salle J.: The stability of Dynamical Systems. SIAM. (1976)

  47. Perko, L.: Differential Equations and Dynamical Systems, vol. 7. Springer, New York (1996)

    MATH  Google Scholar 

  48. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, vol. 112. Springer, New York (1998)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referee for a careful checking of the details and for helpful comments that improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prahlad Majumdar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

1.1 Appendix 1

\(A_1=Eac^2kp^2qr_1r_2-2Eackmpq^2r_1r_2+Eakm^2q^3r_1r_2-Eacknpq^2r_2+Eakmnq^3r_2-ac^2p^2qr_2^2+2acmpq^2r_2^2-am^2q^3r_2^2 ;\, A_2=Ec^2dkp^2qr_1r_2-2Ecdkmpq^2r_1r2+Edkm^2q^3r_1r_2+Eac^2kp^2r_1r_2-4Eackmpqr_1r_2+3Eakm^2q^2r_1r_2-Ecdknpq^2r_2+Edkmnq^3r_2-2Eacknpqr_2+3Eakmnq^2r_2-c^2dp^2qr_2^2+c^2p^2qrr_2^2+2cdmpq^2r_2^2-2cmpq^2rr_2^2-dm^2q^3r_2^2+m^2q^3rr_2^2-ac^2p^2r_2^2+4acmpqr_2^2-3am^2q^2r_2^2 ;\, A_3=-E^2c^2kp^3r_1^2+2E^2ckmp^2qr_1^2-E^2km^2pq^2r_1^2+2E^2cknp^2qr_1-2E^2kmnpq^2r_1+Ec^2dkp^2r_1r_2-4Ecdkmpqr_1r_2+3Edkm^2q^2r_1r_2-E^2kn^2pq^2-2Eackmpr_1r_2+3Eakm^2qr_1r_2+Ec^2p^3r_1r_2-2Ecdknpqr_2-2Ecmp^2qr_1r_2+3Edkmnq^2r_2+Em^2pq^2r_1r_2-Eacknpr_2+3Eakmnqr_2-Ecnp^2qr_2+Emnpq^2r_2-c^2dp^2r_2^2+c^2p^2rr_2^2+4cdmpqr_2^2-4cmpqrr_2^2-3dm^2q^2r_2^2+3m^2q^2rr_2^2+2acmpr_2^2-3am^2qr_2^2 ;\, A_4=2E^2ckmp^2r_1^2-2E^2km^2pqr_1^2+2E^2cknp^2r_1-4E^2kmnpqr_1-2Ecdkmpr_1r_2+3Edkm^2qr_1r_2-2E^2kn^2pq+Eakm^2r_1r_2-Ecdknpr_2-2Ecmp^2r_1r_2+3Edkmnqr_2+2Em^2pqr_1r_2+Eakmnr_2-Ecnp^2r_2+2Emnpqr_2+2cdmpr_2^2-2cmprr_2^2-3dm^2qr_2^2+3m^2qrr_2^2-am^2r_2^2 ;\, A_5=-E^2km^2pr_1^2-2E^2kmnpr_1+Edkm^2r_1r_2-E^2kn^2p+Edkmnr_2+Em^2pr_1r_2+Emnpr_2-dm^2r_2^2+m^2rr_2^2\).

1.2 Appendix 2

\(a_{11}=-\dfrac{1}{(ky_1+1)(qx_1+1)^2}(2akq^2x_1^3y_1+dkq^2x_1^2y_1+4akqx_1^2y_1+2aq^2x_1^3+2dkqx_1y_1+dq^2x_1^2-q^2rx_1^2+2akx_1y_1+4aqx_1^2+kpy_1^2+dky_1+2dqx_1-2q_rx_1+2ax_1+py_1+d-r)\) \(a_{12}=-\dfrac{rx_1k}{(ky_1+1)^2}-\dfrac{px_1}{(qx_1+1)}\) \(a_{13}=-a+\dfrac{py_1q}{(qx_1+1)^3}\) \(a_{14}=-\dfrac{(kq^2rx_1^2+k^2py_1^2+2kqrx_1+2kpy_1+kr+p)}{(qx_1+1)^2(ky_1+1)^2)}\) \(a_{15}=\dfrac{rx_1k^2}{(ky_1+1)^3}\), \(a_{16}=-\dfrac{pq^2y_1}{(qx_1+1)^4}\), \(a_{17}=\dfrac{pq(qx_1+1)}{(qx_1+1)^4}\), \(a_{18}=\dfrac{rk^2}{(ky_1+1)^3}\), \(a_{19}=-\dfrac{rx_1k^3}{(ky_1+1)^4}\), \(a_{21}=-\dfrac{cpy_1}{(qx_1+1)^2}\), \(a_{22}=\dfrac{1}{(qx_1+1)(Er_1+r_2y_1)^2}(E^2cpr_1^2x_1-E^2mqr_1^2x_1+2Ecpr_1r_2x_1y_1-2Emqr_1r_2x_1y_1+cpr_2^2x_1y_1^2-mqr_2^2x_1y_1^2-E^2nqr_1x_1-E^2mr_1^2-2Emr_1r2y_1-mr_2^2y_1^2-E^2nr_1)\) \(a_{23}=-\dfrac{cpy_1q}{(qx_1+1)^3}\) \(a_{24}=\dfrac{cp}{(qx_1+1)^2}\), \(a_{25}=\dfrac{nE^2r_1r_2}{(Er_1+r2y_1)^3}\), \(a_{26}=\dfrac{cpq^2y_1}{(qx_1+1)^4}\), \(a_{27}=-\dfrac{cpq(qx_1+1)}{(qx_1+1)^4}\), \(a_{28}=0\), \(a_{29}=-\dfrac{nE^2r_1r_2^2}{(Er_1+r_2y_1)^4}\), \(B_1=(a_{13}a_{12}^2-a_{14}a_{12}a_{11})u^2+\omega _2(2a_{15}a_{11}-a_{14}a_{12})uv+\omega _2^2a{15}v^2+(a_{18}a_{12}a_{11}^2-a_{19}a_{11}^3+a_{16}a_{12}^3-a_{17}a_{12}^2a_{11})u^3 +\omega _2(2a_{18}a_{11}a_{12}-a_{17}a_{12}^2-3a_{19}a_{11}^2)u^2v+\omega _2^2(a_{18}a_{12}-3a_{19}a_{11})uv^2-\omega _2^3a_{19}v^3\) \(B_2=(a_{23}a_{22}^2-a_{24}a_{22}a_{21})u^2+\omega _2(2a_{25}a_{21}-a_{24}a_{22})uv+\omega _2^2a{25}v^2+(a_{28}a_{22}a_{21}^2-a_{29}a_{21}^3+a_{26}a_{22}^3-a_{27}a_{22}^2a_{21})u^3 +\omega _2(2a_{28}a_{21}a_{22}-a_{27}a_{22}^2-3a_{29}a_{21}^2)u^2v+\omega _2^2(a_{28}a_{22}-3a_{29}a_{21})uv^2-\omega _2^3a_{29}v^3\)

1.3 Appendix 3

\(d_{11}(\psi )=\dfrac{r^{BT}+\psi _1}{ky^*+1)}-d-2ax^*-\dfrac{py^*}{(qx^*+1)^2}, \ d_{12}(\psi )=-\dfrac{(r^{BT}+\psi _1)kx^*}{(ky^*+1)^2}-\dfrac{px^*}{(qx^*+1)}, l_{00}(\psi )=\dfrac{(r^{BT}+\psi _1)x^*}{(ky^*+1)}-dx^*-ax^{*2}-\dfrac{px^*y^*}{(qx^*+1)}, \ l_{20}(\psi )=-a+\dfrac{pqy^*}{(qx^*+1)^3}, l_{11}(\psi )=-\dfrac{(r^{BT}+\psi _1)k}{(ky^*+1)^2}-\dfrac{p}{(qx^*+1)^2}, \ l_{02}(\psi )=\dfrac{(r^{BT}+\psi _1)k^2x^*}{(ky^*+1)^3}, \ d_{21}(\psi )=\dfrac{cpy^*}{(qx^*+1)^2}, m_{00}(\psi )=\dfrac{cpx^*y^*}{qx^*+1}-my^*-\dfrac{n(E^{BT}+\psi _2)y^*}{(r_1(E^{BT}+\psi _2)+r_2y^*)}, \ m_{20}(\psi )=-\dfrac{cpqy^*}{(qx^*+1)^3}, m_{11}(\psi )=\dfrac{cp}{(qx^*+1)^2}, d_{22}(\psi )={nyr_2E^{BT}}{(r_1E^{BT}+r_1\psi _2+r_2y^*)^2}+\dfrac{nr_2\psi _2y*}{(r_1E^{BT}+r_1\psi _2+r_2y^*)^2}\dfrac{cpx^*}{(qx^*+1)}-m-{nE^{BT}}{(r_1E^{BT}+ r_1\psi _2+r_2y^*)} -{n\psi _2}{(r_1E^{BT}+r_1\psi _2+r_2y^*)}, \ m_{02}(\psi )=\dfrac{n(E^{BT}+\psi _2)^2r_1r_2}{((r_1E^{BT}+r_1\psi _2+r_2y^*)^2(r_1(E^{BT}+\psi _2)+r_2y^*))}\)

1.4 Appendix 4

\(e_{02}(\psi )=l_{20}-\dfrac{l_{11}d_{11}}{d_{12}}+\dfrac{l_{02}d_{11}^2}{d_{12}^2}\), \(e_{11}(\psi )=\dfrac{l_{11}}{d_{12}}-\dfrac{2d_{11}l_{02}}{d_{12}^2}\), \(e_{02}(\psi )=\dfrac{l_{02}}{d_{11}^2}\), \(n_{00}(\psi )=d_{11}l_{00}+d_{12}m_{00}\), \(n_{10}(\psi )=d_{12}d_{21}-d_{11}d_{22}\), \(n_{01}(\psi )=d_{11}+d_{22}\), \(n_{20}(\psi )=d_{11}l_{20}-\dfrac{l_{11}d_{11}^2}{d_{12}}+\dfrac{l_{02}d_{11}^3}{d_{12}^2}+d_{12}m_{20}-d_{11}m_{11}+\frac{m_{02}d_{11}^2}{d_{12}}\), \(n_{11}(\psi )=m_{11}+\dfrac{l_{11}d_{11}}{d_{12}}-\dfrac{2d_{11}^2l_{02}}{d_{12}^2}-\dfrac{2d_{11}m_{02}}{d_{12}}\), \(n_{02}(\psi )=\dfrac{d_{11}l_{02}}{d_{12}^2}+\dfrac{m_{02}}{d_{12}}\)

1.5 Appendix 5

\(f_{00}(\psi )=n_{00}(\psi )-l_{00}(\psi )n_{01}(\psi )+l_{00}^2(\psi )(n_{02}(\psi )-d_{02}(\psi )n_{01}(\psi ))-2l_{00}(\psi )d_{02}(\psi )(n_{00}(\psi )-l_{00}(\psi )n_{01}(\psi ))+...=n_{00}(\psi )-l_{00}(\psi )n_{01}(\psi )+l_{00}^2d_{02}(\psi )n_{01}(\psi )+l_{00}^2(\psi )n_{02}(\psi )+... f_{10}(\psi )=n_{10}(\psi )+l_{00}(\psi )d_{11}(\psi )n_{01}(\psi )-l_{00}(\psi )n_{11}(\psi )+d_{11}(\psi )(n_{00}(\psi )-l_{00}(\psi )n_{01}(\psi )) -2l_{00}(\psi )d_{02}(\psi )n_{10}(\psi )+...=n_{10}(\psi )+d_{11}(\psi )n_{00}(\psi )-l_{00}(\psi )n_{11}(\psi )-2l_{00}(\psi )d_{02}(\psi )n_{10}(\psi )+..., f_{01}(\psi )=n_{01}(\psi )-l_{00}(\psi )d_{11}(\psi )+2l_{00}(\psi )d_{02}(\psi )n_{01}(\psi )-2l_{00}(\psi )n_{02}(\psi )+2d_{02}(\psi )n_{00}(\psi )+..., g_{20}(\psi )=n_{20}(\psi )+d_{11}(\psi )n_{10}(\psi )-n_{01}(\psi )d_{20}(\psi )+..., f_{11}(\psi )=-d_{11}(\psi )n_{01}(\psi )+n_{11}(\psi )+2d_{20}(\psi )+d_{11}(\psi )n_{01}(\psi )+2d_{02}(\psi )n_{10}(\psi )+..., =n_{11}(\psi )+2d_{20}(\psi )+2d_{02}(\psi )n_{10}(\psi )+..., f_{02}(\psi )=n_{02}(\psi )-d_{02}(\psi )n_{01}(\psi )+d_{11}(\psi )+2d_{02}(\psi )n_{01}(\psi )+....\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumdar, P., Debnath, S., Mondal, B. et al. Complex dynamics of a prey-predator interaction model with Holling type-II functional response incorporating the effect of fear on prey and non-linear predator harvesting. Rend. Circ. Mat. Palermo, II. Ser 72, 1017–1048 (2023). https://doi.org/10.1007/s12215-021-00701-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12215-021-00701-y

Keywords

Mathematics Subject Classification

Navigation