Skip to main content
Log in

Expansive operators and Drazin invertibility

  • Published:
Rendiconti del Circolo Matematico di Palermo Series 2 Aims and scope Submit manuscript

Abstract

A Hilbert space operator \(T\in B({{{\mathcal {H}}}})\) is (mP)-expansive, for some integer \(m\ge 1\) and positive operator \(P\in B({{{\mathcal {H}}}})\), if \(\sum _{j=0}^m{(-1)^j\left( \begin{array}{clcr}m\\ j\end{array}\right) T^{*j}PT^j}\le 0\). No Drazin invertible operator T can be (mI)-expansive, and if T is (mP)-expansive for some positive operator P, then necessarily P has a decomposition \(P=P_{11}\oplus 0\) and the Drazin inverse \(T_d\) of T is (mP)-contractive. In particular, a Drazin invertible (2, P)-expansive operator is P isometric. If T is \((m,|T^n|^2)\)-expansive for some positive integer n, then \(T^n\) has a decomposition \(T^n=\left( \begin{array}{clcr}U_1P_1 & X\\ 0 & 0\end{array}\right) \), the operator \(P_1U_1\) is m-expansive, the operator \(P^{\frac{1}{2}}_1U_1P^{\frac{1}{2}}_1 \) is m-expansive in an equivalent norm, the operator \(\left( \begin{array}{clcr}P_1U_1 & P_1X\\ 0 & 0\end{array}\right) \) is (mC)-expansive and the operator \(\left( \begin{array}{clcr}P^{\frac{1}{2}}_1U_1P^{\frac{1}{2}}_1 & P_1^{\frac{1}{2}}X\\ 0 & 0\end{array}\right) \) is (mD)-expansive for some operators \(C, D\ge 0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmed, O.U.A.M.S.: On \(A(m, p)\)-expansive and \(A(m, P)\)-hyperexpansive operators on Banach space II. J. Math. Comput. Sci. 5, 123–148 (2015)

    Google Scholar 

  2. Athavale, A.: On completely hyperexpansive operators. Proc. Am. Math. Soc. 124, 3745–3752 (1996)

    Article  MATH  Google Scholar 

  3. Duggal, B.P., Kim, I.H.: Structure of elementary operators defining \(m\)-left invertible, \(m\)-self-adjoint and related classes of operators. J. Math. Anal. Appl. 495, 124718 (2021)

    Article  MATH  Google Scholar 

  4. Exner, G., Jung, I.B., Li, C.: On \(k\)-hyperexpansive operators. J. Math. Anal. Appl. 323, 569–582 (2006)

    Article  MATH  Google Scholar 

  5. Gu, C.: On \((m, p)\)-expansive and \((m, p)\)-contractive operators on Hilbert and Banach spaces. J. Math. Anal. Appl. 426, 893–916 (2015)

    Article  MATH  Google Scholar 

  6. Jung, S., Kim, Y., Ko, E., Lee, J.E.: On \((A, m)\)-expansive operators. Stud. Math. 213, 3–23 (2012)

    Article  MATH  Google Scholar 

  7. Sholapurkar, V.M., Athavale, A.: Completely and alternating hyperexpansive operators. J. Oper. Theory 43, 43–68 (2000)

    MATH  Google Scholar 

  8. Agler, J., Stankus, M.: \(m\)-Isometric transformations of Hilbert space I. Integr. Equat. Oper. Theory 21, 383–429 (1995)

    Article  MATH  Google Scholar 

  9. Bayart, F.: \(m\)-isometries on Banach Spaces. Math. Nachr. 284, 2141–2147 (2011)

    Article  MATH  Google Scholar 

  10. Bermúdez, T., Martinón, A., Noda, J.N.: Products of \(m\)-isometries. Linear Algorithm Appl. 408, 80–86 (2013)

    Article  MATH  Google Scholar 

  11. Botelho, F., Jamison, J.: Isometric properties of elementary operators. Linear Alg. Appl. 432, 357–365 (2010)

    Article  MATH  Google Scholar 

  12. Duggal, B.P., Müller, V.: Tensor product of left \(n\)-invertible operators. Stud. Math. 215(2), 113–125 (2013)

    Article  MATH  Google Scholar 

  13. Duggal, B.P., Kim, I.H.: Left \(m\)-invertibility by the adjoint of Drazin inverse and \(m\)-self-adjointness of Hilbert space operators. Lin. Multilinear Alg. (2020). https://doi.org/10.1080/03081087.2020.1793880

    Article  Google Scholar 

  14. Aiena, P.: Fredholm and local spectral theory II with applications to weyl-type theorems. Springer lecture notes in mathematics. 2235,(2018)

  15. Djordjević, D.S., Rakočević, V.: Lectures on generalized inverses. University of Niš, Faculty of Sciences and Mathematics (2008)

  16. Ando, T.: Topics on operator inequalities. Hokkaido University, Sapporo, Japan, Division of Applied Mathematics, Research Institute of applied electricity (1978)

  17. Arias, M.L., Corach, G., Gonzalez, M.C.: Partial isometries in semi-Hilbertian spaces. Linear Algorithm Appl. 428, 1460–1475 (2008)

    Article  MATH  Google Scholar 

  18. Duggal, B.P., Kim, I.H.: Structure of \(n\)-quasi left \(m\)-invertible and related classes of operators. Demonstratio Math. 53, 249–268 (2020)

    Article  MATH  Google Scholar 

  19. Aluthge, A.: On \(p\)-hyponormal operators for \(0<p<{\frac{1}{2}}\). Integr. Equ. Oper. Theory 13, 307–315 (1990)

    Article  MATH  Google Scholar 

  20. Foias, C., Jung, I.B., Ko, E., Pearcy, C.: Complete contractivity of maps associated with the Aluthge and Duggal transforms. Pac. J. Math. 209, 249–259 (2003)

    Article  MATH  Google Scholar 

  21. Taylor, A.E., Lay, D.C.: Introduction to Functional Analysis. Wiley (1980)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are thankful to a referee for his very thoughtful, comprehensive comments on the original version of the paper, many of which have now been incorporated into the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. P. Duggal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author I. H. Kim was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2019R1F1A1057574).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duggal, B.P., Kim, I.H. Expansive operators and Drazin invertibility. Rend. Circ. Mat. Palermo, II. Ser 72, 341–353 (2023). https://doi.org/10.1007/s12215-021-00683-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12215-021-00683-x

Keywords

Mathematics Subject Classification

Navigation