Skip to main content
Log in

Extending the applicability and convergence domain of a higher-order iterative algorithm under \(\omega \) condition

  • Published:
Rendiconti del Circolo Matematico di Palermo Series 2 Aims and scope Submit manuscript

Abstract

The main contribution of this study is that the applicability and convergence domain of a fifth-order convergent equation solver is extended. We use \(\omega \) condition on the first Fréchet derivative to study the local analysis, and this expands the applicability of the formula for such problems where the earlier study based on Lipschitz constants cannot be used. Also, we avoid the use of the extra assumption on boundedness of the first derivative of the nonlinear operator. Our idea can be used on other iterative methods. Numerical tests confirmed that the proposed analysis produces a larger convergence domain, in comparison to the earlier study, without using additional conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Amat, S., Argyros, I.K., Busquier, S., Hernández-Verón, M.A., Martínez, E.: On the local convergence study for an efficient k-step iterative method. J. Comput. Appl. Math. 343, 753–761 (2018)

    Article  MathSciNet  Google Scholar 

  2. Argyros, I.K.: Convergence and Application of Newton-Type Iterations. Springer, Berlin (2008)

    MATH  Google Scholar 

  3. Argyros, I.K., Cho, Y.J., Hilout, S.: Numerical Methods for Equations and its Applications. Taylor & Francis, CRC Press, New York (2012)

    Book  Google Scholar 

  4. Argyros, I.K., Hilout, S.: Computational Methods in Nonlinear Analysis. World Scientific Publ. House, New Jersey (2013)

    Book  Google Scholar 

  5. Argyros, I.K., Hilout, S.: On the local convergence of fast two-step Newton-like methods for solving nonlinear equations. J. Comput. Appl. Math. 245, 1–9 (2013)

    Article  MathSciNet  Google Scholar 

  6. Argyros, I.K., Magreñán, Á.A.: A study on the local convergence and the dynamics of Chebyshev–Halley-type methods free from second derivative. Numer. Algor. 71(1), 1–23 (2015)

    Article  MathSciNet  Google Scholar 

  7. Argyros, I.K., George, S., Magreñán, Á.A.: Local convergence for multi-point-parametric Chebyshev–Halley-type methods of higher convergence order. J. Comput. Appl. Math. 282, 215–224 (2015)

    Article  MathSciNet  Google Scholar 

  8. Argyros, I.K., Cho, Y.J., George, S.: Local convergence for some third order iterative methods under weak conditions. J. Korean Math. Soc. 53(4), 781–793 (2016)

    Article  MathSciNet  Google Scholar 

  9. Argyros, I.K., George, S.: Local convergence of a fifth convergence order method in Banach space. Arab J. Math. Sci. 23, 205–214 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Argyros, I.K., Sharma, D., Parhi, S.K.: On the local convergence of Weerakoon-Fernando method with \(\omega \) continuity condition in Banach spaces. SeMA J. (2020). https://doi.org/10.1007/s40324-020-00217-y

    Article  MathSciNet  MATH  Google Scholar 

  11. Argyros, I.K., George, S.: On the complexity of extending the convergence region for Traub’s method. J. Complex. 56, 101423 (2020). https://doi.org/10.1016/j.jco.2019.101423

    Article  MathSciNet  MATH  Google Scholar 

  12. Argyros, I.K., Sharma, D., Parhi, S.K., Sunanda, S.K.: On the Convergence, Dynamics and Applications of a New Class of Nonlinear System Solvers. Int. J. Appl. Comput. Math. 6(5), Article number: 142 (2020). https://doi.org/10.1007/s40819-020-00893-4

  13. Behl, R., Cordero, A., Motsa, S.S., Torregrosa, J.R.: Construction of fourth-order optimal families of iterative methods and their dynamics. Appl. Math. Comput. 271, 89–101 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Chun, C., Lee, M.Y., Neta, B., Džunić, J.: On optimal fourth-order iterative methods free from second derivative and their dynamics. Appl. Math. Comput. 218(11), 6427–6438 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Cordero, A., Torregrosa, J.R.: Variants of Newton’s method for functions of several variables. Appl. Math. Comput. 183, 199–208 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Cordero, A., Ezquerro, J.A., Hernández-Verón, M.A., Torregrosa, J.R.: On the local convergence of a fifth-order iterative method in Banach spaces. Appl. Math. Comput. 251, 396–403 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Darvishi, M.T., Barati, A.: A fourth-order method from quadrature formulae to solve systems of nonlinear equations. Appl. Math. Comput. 188, 257–261 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Ezquerro, J.A., González, D., Hernández, M.A.: On the local convergence of Newton’s method under generalized conditions of Kantorovich. Appl. Math. Lett. 26(5), 566–570 (2013)

    Article  MathSciNet  Google Scholar 

  19. Frontini, M., Sormani, E.: Some variant of Newton’s method with third order convergence. Appl. Math. Comput. 140, 419–426 (2003)

    MathSciNet  MATH  Google Scholar 

  20. Hernández, M.A., Rubio, M.J.: On the local convergence of a Newton–Kurchatov-type method for non-differentiable operators. Appl. Math. Comput. 304, 1–9 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Grau-Sánchez, M., Grau, Á., Noguera, M.: On the computational efficiency index and some iterative methods for solving systems of nonlinear equations. J. Comput. Appl. Math. 236, 1259–1266 (2011)

    Article  MathSciNet  Google Scholar 

  22. Homeier, H.H.H.: A modified Newton method with cubic convergence: the multivariable case. J. Comput. Appl. Math. 169, 161–169 (2004)

    Article  MathSciNet  Google Scholar 

  23. Kou, J., Li, Y., Wang, X.: A composite fourth-order iterative method for solving non-linear equations. Appl. Math. Comput. 184, 471–475 (2007)

    MathSciNet  MATH  Google Scholar 

  24. Maroju, P., Magreñán, Á.A., Sarría, Í., Kumar, A.: Local convergence of fourth and fifth order parametric family of iterative methods in Banach spaces. J. Math. Chem. 58, 686–705 (2020)

    Article  MathSciNet  Google Scholar 

  25. Martínez, E., Singh, S., Hueso, J.L., Gupta, D.K.: Enlarging the convergence domain in local convergence studies for iterative methods in Banach spaces. Appl. Math. Comput. 281, 252–265 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Noor, M.A., Wassem, M.: Some iterative methods for solving a system of nonlinear equations. Appl. Math. Comput. 57, 101–106 (2009)

    Article  MathSciNet  Google Scholar 

  27. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)

    MATH  Google Scholar 

  28. Özban, A.Y.: Some new variants of Newton’s method. Appl. Math. Lett. 17, 677–682 (2004)

    Article  MathSciNet  Google Scholar 

  29. Petković, M.S., Neta, B., Petković, L., Dz̃unić, D.: Multipoint Methods for Solving Nonlinear Equations. Elsevier, Amsterdam (2013)

    MATH  Google Scholar 

  30. Rall, L.B.: Computational Solution of Nonlinear Operator Equations. Robert E. Krieger, New York (1979)

    MATH  Google Scholar 

  31. Sharma, D., Parhi, S.K.: On the local convergence of a third-order iterative scheme in Banach spaces. Rend. Circ. Mat. Palermo, II. Ser. (2020). https://doi.org/10.1007/s12215-020-00500-x

    Article  MATH  Google Scholar 

  32. Sharma, D., Parhi, S.K.: Extending the applicability of a Newton-Simpson-like method. Int. J. Appl. Comput. Math. 6(3), Article number: 79 (2020). https://doi.org/10.1007/s40819-020-00832-3

  33. Sharma, J.R., Argyros, I.K.: Local convergence of a Newton–Traub composition in Banach spaces. SeMA J. 75(1), 57–68 (2017)

    Article  MathSciNet  Google Scholar 

  34. Singh, S., Gupta, D.K., Badoni, R.P., Martínez, E., Hueso, J.L.: Local convergence of a parameter based iteration with Hölder continuous derivative in Banach spaces. Calcolo. 54(2), 527–539 (2017)

    Article  MathSciNet  Google Scholar 

  35. Traub, J.F.: Iterative Methods for Solution of Equations. Prentice-Hal, Englewood Cliffs (1964)

    MATH  Google Scholar 

  36. Weerakoon, S., Fernando, T.G.I.: A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 13, 87–93 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The second author is funded by University Grants Commission of India (Grant number NOV2017-402662).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Sharma.

Ethics declarations

Conflict of interest

The authors declare that they do not have conflict of interests.

Ethical standard

This research complies with ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argyros, I.K., Sharma, D., Argyros, C.I. et al. Extending the applicability and convergence domain of a higher-order iterative algorithm under \(\omega \) condition. Rend. Circ. Mat. Palermo, II. Ser 71, 469–482 (2022). https://doi.org/10.1007/s12215-021-00624-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12215-021-00624-8

Keywords

Mathematics Subject Classification

Navigation