Skip to main content
Log in

Solutions to inexact resolvent inclusion problems with applications to nonlinear analysis and optimization

  • Published:
Rendiconti del Circolo Matematico di Palermo Series 2 Aims and scope Submit manuscript

Abstract

Many problems in nonlinear analysis and optimization, among them variational inequalities and minimization of convex functions, can be reduced to finding zeros (namely, roots) of set-valued operators. Hence numerous algorithms have been devised in order to achieve this task. A lot of these algorithms are inexact in the sense that they allow perturbations to appear during the iterative process, and hence they enable one to better deal with noise and computational errors, as well as superiorization. For many years a certain fundamental question has remained open regarding many of these known inexact algorithmic schemes in various finite and infinite dimensional settings, namely whether there exist sequences satisfying these inexact schemes when errors appear. We provide a positive answer to this question. Our results also show that various theorems discussing the convergence of these inexact schemes have a genuine merit beyond the exact case. As a by-product we solve the standard and the strongly implicit inexact resolvent inclusion problems, introduce a promising class of functions (fully Legendre functions), establish continuous dependence (stability) properties of the solution of the inexact resolvent inclusion problem and continuity properties of the protoresolvent, and generalize the notion of strong monotonicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ahmadi, P., Khatibzadeh, H.: On the convergence of inexact proximal point algorithm on Hadamard manifolds. Taiwan. J. Math. 18, 419–433 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosetti, A., Prodi, G.: A Primer of Nonlinear Analysis. Cambridge University Press, New York (1993)

    MATH  Google Scholar 

  3. Aragón Artacho, F.J., Geoffroy, M.H.: Uniformity and inexact version of a proximal method for metrically regular mappings. J. Math. Anal. Appl. 335, 168–183 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Auslender, A., Teboulle, M.: Asymptotic cones and functions in optimization and variational inequalities. Springer Monographs in Mathematics. Springer, New York (2003)

    MATH  Google Scholar 

  5. Auslender, A., Teboulle, M., Ben-Tiba, S.: Interior proximal and multiplier methods based on second order homogeneous kernels. Math. Oper. Res. 24, 645–668 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Auslender, A., Teboulle, M., Ben-Tiba, S.: A logarithmic-quadratic proximal method for variational inequalities. Comput. Optim. Appl. 12, 31–40 (1999). Computational optimization—a tribute to Olvi Mangasarian, Part I

    Article  MathSciNet  MATH  Google Scholar 

  7. Bačák, M.: The proximal point algorithm in metric spaces. Isr. J. Math. 194, 689–701 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bačák, M.: Convex Analysis and Optimization in Hadamard Spaces. De Gruyter Series in Nonlinear Analysis and Applications, vol. 22. De Gruyter, Berlin (2014)

    MATH  Google Scholar 

  9. Banerjee, A., Merugu, S., Dhillon, I.S., Ghosh, J.: Clustering with Bregman divergences. J. Mach. Learn. Res. 6, 1705–1749 (2005). A preliminary version in Proceedings of the fourth SIAM International Conference on Data Mining, pp. 234–245, Philadelphia, 2004

    MathSciNet  MATH  Google Scholar 

  10. Bauschke, H.H., Borwein, J.M.: Legendre functions and the method of random Bregman projections. J. Convex Anal. 4, 27–67 (1997)

    MathSciNet  MATH  Google Scholar 

  11. Bauschke, H.H., Borwein, J.M., Combettes, P.L.: Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces. Commun. Contemp. Math. 3, 615–647 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bauschke, H.H., Borwein, J.M., Combettes, P.L.: Bregman monotone optimization algorithms. SIAM J. Control Optim. 42, 596–636 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics, 2nd edn. Springer, Cham (2017)

    Book  MATH  Google Scholar 

  14. Bauschke, H.H., Wang X., Yao L.: General resolvents for monotone operators: characterization and extension, Biomedical mathematics: Promising directions in imaging, therapy planning and inverse problems (Huangguoshu 2008), Chapter 4, Medical Physics Publishing (2010). arXiv:0810.3905 [math.FA] ([v1], 21 Oct 2008)

  15. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer Series in Operations Research. Springer, New York (2000)

    Book  MATH  Google Scholar 

  16. Borwein, J.M.: Maximal monotonicity via convex analysis. J. Convex Anal. 13, 561–586 (2006)

    MathSciNet  MATH  Google Scholar 

  17. Borwein, J.M., Lewis, A.L.: Convex Analysis and Nonlinear Optimization: Theory and Examples. CMS Books in Mathematics, 2nd edn. Springer, New York (2006)

    Book  MATH  Google Scholar 

  18. Bregman, L.M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7, 200–217 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  19. Brézis, H.: Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973, North-Holland Mathematics Studies, No. 5. Notas de Matemática (50)

  20. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext, Springer, New York (2011)

    MATH  Google Scholar 

  21. Brézis, H., Lions, P.-L.: Produits infinis de résolvantes. Isr. J. Math. 29, 329–345 (1978)

    Article  MATH  Google Scholar 

  22. Bruck, R.E., Reich, S.: Nonexpansive projections and resolvents of accretive operators in Banach spaces. Houston J. Math. 32, 459–470 (1977)

    MathSciNet  MATH  Google Scholar 

  23. Burachik, R.S., Iusem, A.N.: Set-Valued Mappings and Enlargements of Monotone Operators. Springer Optimization and Its Applications, vol. 8. Springer, New York (2008)

    MATH  Google Scholar 

  24. Burachik, R.S., Iusem, A.N., Svaiter, B.F.: Enlargement of monotone operators with applications to variational inequalities. Set Valued Anal. 5, 159–180 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Burachik, R.S., Lopes, J.O., Da Silva, G.J.P.: An inexact interior point proximal method for the variational inequality problem. Comput. Appl. Math. 28, 15–36 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Burachik, R.S., Sagastizábal, C.A., Svaiter B.F.: \(\epsilon \)-enlargements of maximal monotone operators: theory and applications. In: Fukushima M., Qi L. (eds.) Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods. (Lausanne, 1997), Applied Optimization, vol. 22. Kluwer Acad. Publ., Dordrecht, pp. 25–43 (1999)

  27. Burachik, R.S., Scheimberg, S.: A proximal point method for the variational inequality problem in Banach spaces. SIAM J. Control Optim. 39, 1633–1649 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Burachik, R.S., Scheimberg, S., Svaiter, B.F.: Robustness of the hybrid extragradient proximal-point algorithm. J. Optim. Theory Appl. 111, 117–136 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Burachik, R.S., Svaiter, B.F.: A relative error tolerance for a family of generalized proximal point methods. Math. Oper. Res. 26, 816–831 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Butnariu, D., Iusem, A.N.: Totally Convex Functions for Fixed Point Computation and Infinite Dimensional Optimization. Applied Optimization. Kluwer Academic Publishers, Dordrecht, The Netherlands (2000)

    Book  MATH  Google Scholar 

  31. Butnariu, D., Iusem, A.N., Zălinescu, C.: On uniform convexity, total convexity and convergence of the proximal point and outer Bregman projection algorithms in Banach spaces. J. Convex Anal. 10, 35–61 (2003)

    MathSciNet  MATH  Google Scholar 

  32. Censor, Y.: Weak and strong superiorization: between feasibility-seeking and minimization, An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. 23, 41–54 (2015)

  33. Censor, Y.: Superiorization and perturbation resilience of algorithms: a continuously updated bibliography, 2017, http://math.haifa.ac.il/yair/bib-superiorization-censor.html, website last updated: 2 March 2017, arXiv version: arXiv:1506.04219 [math.OC] ([v2], 9 Mar 2017)

  34. Censor, Y., Davidi, R., Herman, G.T.: Perturbation resilience and superiorization of iterative algorithms, Inverse Problems 26 (2010), 065008 (12 pages)

  35. Censor, Y., Lent, A.: An iterative row-action method for interval convex programming. J. Optim. Theory Appl. 34, 321–353 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  36. Censor, Y., Reem, D.: Zero-convex functions, perturbation resilience, and subgradient projections for feasibility-seeking methods. Math. Program. (Ser. A) 152, 339–380 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Censor, Y., Zenios, A.: Proximal minimization algorithm with \(D\)-functions. J. Optim. Theory Appl. 73, 451–464 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  38. Courant, R., Hilbert D.: Methods of mathematical physics. Vol. II: Partial differential equations, (Vol. II by R. Courant.), Interscience Publishers (a division of John Wiley & Sons), New York-London, (1962)

  39. Davidi, R.: Algorithms for superiorization and their applications to image reconstruction, PhD thesis, The City University of New York (CUNY), USA, (2010)

  40. Diestel, J.: Geometry of Banach spaces–selected topics, Lecture Notes in Mathematics, vol. 485. Springer, Berlin (1975)

    Book  MATH  Google Scholar 

  41. Djafari Rouhani, B., Khatibzadeh, H.: On the proximal point algorithm. J. Optim. Theory Appl. 137, 411–417 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Eckstein, J.: Nonlinear proximal point algorithms using Bregman functions, with applications to convex programming. Math. Oper. Res. 18, 202–226 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  43. Eckstein, J.: Approximate iterations in Bregman-function-based proximal algorithms. Math. Program. 83, 113–123 (1998)

    MathSciNet  MATH  Google Scholar 

  44. Eckstein, J., Svaiter, B.F.: General projective splitting methods for sums of maximal monotone operators. SIAM J. Control Optim. 48, 787–811 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Gárciga Otero, R., Iusem, A.N.: Proximal methods with penalization effects in Banach spaces. Numer. Funct. Anal. Optim. 25, 69–91 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  46. Gárciga Otero, R., Iusem, A.N.: Proximal methods in reflexive Banach spaces without monotonicity. J. Math. Anal. Appl. 330, 433–450 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  47. Gárciga Otero, R., Iusem, A.N.: Fixed-point methods for a certain class of operators. J. Optim. Theory Appl. 159, 656–672 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Gárciga Otero, R., Svaiter, B.F.: A strongly convergent hybrid proximal method in Banach spaces. J. Math. Anal. Appl. 289, 700–711 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  49. Griva, I., Polyak, R.A.: Proximal point nonlinear rescaling method for convex optimization. Numer. Algebra Control Optim. 1, 283–299 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  50. Ha, C.D.: A generalization of the proximal point algorithm. SIAM J. Control Optim. 28, 503–512 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  51. Herman, G.T.: Superiorization for image analysis, Combinatorial image analysis, Lecture Notes in Computer Science, vol. 8466, Springer, 2014, p. 1–7

  52. Hiriart-Urruty, J.-B., Lemaréchal, C.: Fundamentals of Convex Analysis, Grundlehren Text Editions, Springer-Verlag, Berlin, 2001. Abridged version of Convex analysis and Minimization Algorithms. I, II, Springer (1993)

    Google Scholar 

  53. Humes Jr., C., Silva, P.J.S., Svaiter, B.F.: Some inexact hybrid proximal augmented Lagrangian algorithms. Numer. Algorithms 35, 175–184 (2004)

  54. Iusem, A.N., Gárciga Otero, R.: Inexact versions of proximal point and augmented Lagrangian algorithms in Banach spaces, Numer. Funct. Anal. Optim. 22, 609–640 (2001). Erratum. Numer. Funct. Anal. Optim. 23(1–2), 227–228 (2002)

  55. Iusem, A.N., Gárciga Otero, R.: Augmented Lagrangian methods for cone-constrained convex optimization in Banach spaces. J. Nonlinear Convex Anal. 3, 155–176 (2002)

    MathSciNet  MATH  Google Scholar 

  56. Iusem, A.N., Pennanen, T., Svaiter, B.F.: Inexact variants of the proximal point algorithm without monotonicity. SIAM J. Optim. 13, 1080–1097 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  57. Iusem, A.N., Reem, D., Reich, S.: Fixed points of Legendre-Fenchel type transforms. arXiv:1708.00464 [math.CA] ([v1]: 25 July 2017)

  58. Kassay, G.: The proximal points algorithm for reflexive Banach spaces. Studia Univ. Babeş-Bolyai Math. 30, 9–17 (1985)

    MathSciNet  MATH  Google Scholar 

  59. Li, C., López G., Martín-Márquez V.: Monotone vector fields and the proximal point algorithm on Hadamard manifolds. J. Lond. Math. Soc. 79, 663–683 (2009)

  60. Li, C., López, G., Martín-Márquez, V., Wang, J.-H.: Resolvents of set-valued monotone vector fields in Hadamard manifolds. Set Valued Var. Anal. 19, 361–383 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  61. Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces, II: Function spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (Results in Mathematics and Related Areas). Springer-Verlag, Berlin-New York (1979)

  62. Lotito, P.A., Parente, L.A., Solodov, M.V.: A class of variable metric decomposition methods for monotone variational inclusions. J. Convex Anal. 16, 857–880 (2009)

    MathSciNet  MATH  Google Scholar 

  63. Martín-Márquez, V., Reich, S., Sabach, S.: Right Bregman nonexpansive operators in Banach spaces. Nonlinear Anal. 75, 5448–5465 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  64. McCarthy, C.A.: \(c_{p}\). Isr. J. Math. 5, 249–271 (1967)

    Article  Google Scholar 

  65. Minty, G.J.: Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29, 341–346 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  66. Monteiro, R.D.C., Svaiter, B.F.: Iteration-complexity of a Newton proximal extragradient method for monotone variational inequalities and inclusion problems. SIAM J. Optim. 22, 914–935 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  67. Monteiro, R.D.C., Svaiter, B.F.: An accelerated hybrid proximal extragradient method for convex optimization and its implications to second-order methods. SIAM J. Optim. 23, 1092–1125 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  68. Moreau, J.J.: Fonctions convexes duales et points proximaux dans un espace hilbertien. C.R. Acad. Sci. Paris Sér. I Math. 255, 2897–2899 (1962)

    MathSciNet  MATH  Google Scholar 

  69. Moreau, J.J.: Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. France 93, 273–299 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  70. Papa Quiroz, E.A., Oliveira, P.R.: Proximal point methods for quasiconvex and convex functions with Bregman distances on Hadamard manifolds. J. Convex Anal. 16, 49–69 (2009)

    MathSciNet  MATH  Google Scholar 

  71. Parente, L.A., Lotito, P.A., Solodov, M.V.: A class of inexact variable metric proximal point algorithms. SIAM J. Optim. 19, 240–260 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  72. Phelps, R.R.: Convex Functions, Monotone Operators and Differentiability, 2 ed., Lecture Notes in Mathematics, vol. 1364, Springer-Verlag, Berlin, 1993, A closely related material can be found in: Lectures on maximal monotone operators, arXiv:math/9302209 [math.FA] ([v1], 4 Feb 1993)

  73. Pinchover, Y., Rubinstein, J.: An Introduction to Partial Differential Equations. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  74. Polyak R.A.: The legendre transformation in modern optimization. In: Goldengorin B. (ed.) Optimization and Its Applications in Control and Data Sciences. Springer Optimization and Its Applications, vol 115, pp 437–507. Springer, Cham (2016)

  75. Reem, D.: The Bregman distance without the Bregman function II, Optimization theory and related topics, Contemp. Math. (Am. Math. Soc., Providence, RI), vol. 568, pp. 213–223 (2012)

  76. Reem, D., De Pierro A.R.: A new convergence analysis and perturbation resilience of some accelerated proximal forward-backward algorithms with errors, Inverse Problems 33 (2017), 044001 (28pp), arXiv:1508.05631 [math.OC] (2015) (current version: [v3], 29 Jun 2016)

  77. Reich, S., Sabach, S.: A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces. J. Nonlinear Convex Anal. 10, 471–485 (2009)

    MathSciNet  MATH  Google Scholar 

  78. Reich, S., Sabach, S.: Two strong convergence theorems for a proximal method in reflexive Banach spaces. Numer. Funct. Anal. Optim. 31, 22–44 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  79. Reich, S., Sabach, S.: Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive Banach spaces. Nonlinear Anal. 73, 122–135 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  80. Reich, S., Sabach, S.: Three strong convergence theorems regarding iterative methods for solving equilibrium problems in reflexive Banach spaces, Optimization Theory and Related Topics. Contemp. Math. (Amer. Math. Soc., Providence, RI), vol. 568, 225–240 (2012)

  81. Rockafellar, R.T.: Convex Analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, NJ, USA, 1970

  82. Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pac. J. Math. 33, 209–216 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  83. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  84. Rockafellar, R.T., Wets, R.J.-B.: Variational analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 317. Springer, Berlin (1998)

    Google Scholar 

  85. Silva, P.J.S., Eckstein, J., Humes Jr., C.: Rescaling and stepsize selection in proximal methods using separable generalized distances. SIAM J. Optim. 12, 238–261 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  86. Simons, S.: From Hahn-Banach to Monotonicity, 2 ed., Lecture Notes in Mathematics, vol. 1693, Springer, New York (2008)

  87. Solodov, M.V.: A class of decomposition methods for convex optimization and monotone variational inclusions via the hybrid inexact proximal point framework. Optim. Methods Softw. 19, 557–575 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  88. Solodov, M.V., Svaiter, B.F.: A hybrid approximate extragradient-proximal point algorithm using the enlargement of a maximal monotone operator. Set-Valued Anal. 7, 323–345 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  89. Solodov, M.V., Svaiter, B.F.: A hybrid projection-proximal point algorithm. J. Convex Anal. 6, 59–70 (1999)

    MathSciNet  MATH  Google Scholar 

  90. Solodov, M.V., Svaiter, B.F.: A comparison of rates of convergence of two inexact proximal point algorithms. In: Pillo, G.D., Giannessi, F. (eds.) Nonlinear Optimization and Related Topics (Erice, 1998). Applied Optimization, vol. 36. Kluwer Acad. Publ., Dordrecht, pp. 415–427 (2000)

  91. Solodov, M.V., Svaiter B.F.: Error bounds for proximal point subproblems and associated inexact proximal point algorithms. Math. Program. Ser. B 88, 371–389 (2000) Error bounds in mathematical programming (Kowloon, 1998)

  92. Solodov, M.V., Svaiter, B.F.: An inexact hybrid generalized proximal point algorithm and some new results in the theory of Bregman functions. Math. Oper. Res. 51, 214–230 (2000)

    Article  MATH  Google Scholar 

  93. Solodov, M.V., Svaiter, B.F.: A unified framework for some inexact proximal point algorithms. Numer. Funct. Anal. Optim. 22, 1013–1035 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  94. Souza, J.C.O., Oliveira, P.R.: A proximal point algorithm for DC fuctions on Hadamard manifolds. J. Global Optim. 63, 797–810 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  95. Tang, G.-J., Huang, N.-J.: Rate of convergence for proximal point algorithms on Hadamard manifolds. Oper. Res. Lett. 42, 383–387 (2014)

    Article  MathSciNet  Google Scholar 

  96. Teboulle, M.: Entropic proximal mappings with applications to nonlinear programming. Math. Oper. Res. 17, 670–690 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  97. Tomczak-Jaegermann, N.: The moduli of smoothness and convexity and the Rademacher averages of trace classes \(S_{p}(1\le p<\infty )\). Studia Math. 50, 163–182 (1974)

    MathSciNet  MATH  Google Scholar 

  98. van Tiel, J.: Convex Analysis: An Introductory Text. John Wiley and Sons, Universities Press, Belfast, Northern Ireland (1984)

    MATH  Google Scholar 

  99. Walter W.: Ordinary Differential Equations, Graduate Texts in Mathematics, Readings in Mathematics, vol. 182, Springer-Verlag, New York, 1998, Translated by R. Thompson, based on and extends the sixth German edition (from 1996)

  100. Wang, J., Li, C., Lopez, G., Yao, J.C.: Convergence analysis of inexact proximal point algorithms on Hadamard manifolds. J. Global Optim. 61, 553–573 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  101. Xia, F.Q., Huang, N.J.: An inexact hybrid projection-proximal point algorithm for solving generalized mixed variational inequalities. Comput. Math. Appl. 62, 4596–4604 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  102. Xu, Z.B., Roach, G.F.: Characteristic inequalities of uniformly convex and uniformly smooth Banach spaces. J. Math. Anal. Appl. 157, 189–210 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  103. Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for \(\ell _1\)-minimization with applications to compressed sensing. SIAM J. Imaging Sci. 1, 143–168 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  104. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific Publishing, River Edge, NJ (2002)

    Book  MATH  Google Scholar 

  105. Zaslavski, A.J.: Inexact proximal point methods in metric spaces. Set-Valued Var. Anal. 19, 589–608 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to express our thanks to Shoham Sabach and Roman Polyak for helpful discussions, and to the referees for considering our paper and for their feedback. Part of the research of the first author was done while he was at the Institute of Mathematical and Computer Sciences (ICMC), University of São Paulo, São Carlos, Brazil (2015) and this is an opportunity for him to thank FAPESP. The second author was partially supported by the Israel Science Foundation (Grant 389/12), by the Fund for the Promotion of Research at the Technion and by the Technion General Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simeon Reich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reem, D., Reich, S. Solutions to inexact resolvent inclusion problems with applications to nonlinear analysis and optimization. Rend. Circ. Mat. Palermo, II. Ser 67, 337–371 (2018). https://doi.org/10.1007/s12215-017-0318-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12215-017-0318-6

Keywords

Mathematics Subject Classification

Navigation