Skip to main content
Log in

Rank two bundles with canonical determinant and four sections

  • Published:
Rendiconti del Circolo Matematico di Palermo (1952 -) Aims and scope Submit manuscript

Abstract

Let \(C\) be a smooth irreducible complex projective curve of genus \(g\) and let \(B^k(2,K_C)\) be the Brill–Noether locus parametrizing classes of (semi)-stable vector bundles \(E\) of rank two with canonical determinant over \(C\) with \(h^0(C,E)\ge k\). We show that \(B^4(2,K_C)\) has an irreducible component \(\mathcal B\) of dimension \(3g-13\) on a general curve \(C\) of genus \(g\ge 8\). Moreover, we show that for the general element \([E]\) of \(\mathcal B\), \(E\) fits into an exact sequence \(0\rightarrow {\mathcal {O}}_C(D)\rightarrow E\rightarrow K_C(-D)\rightarrow 0\) with \(D\) a general effective divisor of degree three, and the corresponding coboundary map \(\partial : H^0(C,K_C(-D))\rightarrow H^1(C,{\mathcal {O}}_C(D))\) has cokernel of dimension three.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arbarello, E., Cornalba, M., Griffiths, P.A., Harris, J.: Geometry of algebraic curves, vol. I. Grundlehren der Mathematischen Wissenschaften, p 267. Springer, New York (1985)

  2. Beauville, A.: Remark on a conjecture of Mukai, pp. 1–6. arXiv:math/0610516v1 [math.AG.] (2006)

  3. Bertram, A., Feinberg, B.: On stable vector bundles with canonical determinant and many sections. Algebraic Geometry (Catania 1993/Barcelona 1994). Lectures Notes in Pure and Applied Mathematics, vol. 200, pp. 259–269. Marcel Dekker (1998)

  4. Ciliberto, C., Flamini, F.: Brill–Noether loci for stable rank-two vector bundles on a general curve. Geometry and arithmetic, pp. 61–74. EMS Ser. Congr. Rep, Eur. Math. Soc., Zurich (2012)

  5. Ciliberto, C., Flamini, F.: Extensions of line bundles and Brill-Noether loci of rank-two vector bundles on a general curve, pp. 1–32. arXiv:math/1312.6239v2 [math.AG] (2013)

  6. Van Geemen, B., Izadi, E.: The tangent space to the moduli space of vector bundles on a curve and the singular locus of the theta divisor of the Jacobian. J. Algebraic Geom 10(1), 133–177 (2001)

    MathSciNet  Google Scholar 

  7. Ghione, F.: Un problème du type Brill-Noether pour les fibrés vectoriels. Algebraic Geometry-Open problems (Ravello), Lecture Notes in Math., vol. 997, pp. 197–209. Springer, Berlin 1983 (1982)

  8. Gieseker, D.: A lattice version of the KP equation. Acta Math. 168, 219–248 (1992)

    Article  MathSciNet  Google Scholar 

  9. Hartshorne, R.: Algebraic Geometry. GTM No. 52. Springer, New York-Heidelberg (1977)

    Book  Google Scholar 

  10. Grzegorczyk, I., Teixidir i Bigas, M.: Brill–Noether theory for stable vector bundles. Moduli Spaces and Vector Bundles. London Math. Soc. Note Ser., vol. 359, pp. 29–50. Cambridge Univ. Press, Cambridge (2009)

  11. Lange, H., Narasimhan, M.S.: Maximal subbundles of rank-two vector bundles on curves. Math. Ann. 266, 55–72 (1983)

    Article  MathSciNet  Google Scholar 

  12. Lange, H., Newstead, P., Park, S.S.: Non-emptiness of Brill-Noether loci in \(M(2, K)\), vol. 20, pp. 1–21. arXiv:math/1311.5007v1[math.AG] (2013)

  13. Mukai, S.: Vector bundles and Brill–Noether theory. Current topics in complex algebraic geometry, Math. Sci. Res. Inst. Pub., vol. 28, pp. 145–168. Cambridge Univ. Press, Cambridge (1995)

  14. Mukai, S.: Curves and Grassmannians. Algebraic Geometry and related topics, Inchon, Korea, pp. 19–40. International Press, Boston 1993 (1992)

  15. Mukai, S.: Non-Abelian Brill–Noether theory and Fano 3-folds. Sugaku expositions 14(2), 125–133 (Transaltion of Sugaku, 49(1997), no. 1, 1–24) (2001)

  16. Osserman, B.: Brill–Noether loci with fixed determinant in rank two. Int. J. Math.24(13) 1350099, p. 24 (2013)

  17. Sernesi, S.: Deformations of algebraic schemes, vol. 334. Grundlehren der Mathematischen Wissenschaften. A Series of Comprehensive Studies in Mathematics. Springer, Berlin

  18. Teixidor i Bigas, M.: Rank two vector bundles with canonical determinant. Math. Nachr. 265, 100–106 (2004)

    Article  MathSciNet  Google Scholar 

  19. Teixidor i Bigas, M.: Petri map for rank two bundles with canonical determinant. Compos. Math. 144(3), 705–720 (2008)

    Article  MathSciNet  Google Scholar 

  20. Naizhen, Z.: Towards the Bertram-Feinberg-Mukai conjecture, vol 3. arXiv:1409.0971v1 [math.AG] (2014)

Download references

Acknowledgments

Both authors give thanks to Ciro Ciliberto, Flaminio Flamini, Elham Izadi and Christian Pauly for fruitful discussions and suggestions. We thank the Referee for his or her careful reading and helpful comments and suggestions which greatly contributed in improving the final version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abel Castorena.

Additional information

The first named author was supported by sabbatical fellowships from CONACyT (Research Grant 133228) and PASPA-DGAPA (UNAM).

The second named author was supported by a CONACyT scholarship and partially supported by CONACyT (Research Grant 166158) and LAISLA-México.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castorena, A., Reyes-Ahumada, G. Rank two bundles with canonical determinant and four sections. Rend. Circ. Mat. Palermo 64, 261–272 (2015). https://doi.org/10.1007/s12215-015-0197-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12215-015-0197-7

Keywords

Mathematics Subject Classification

Navigation