Skip to main content
Log in

Rakočević’s property for generalized derivations

  • Published:
Rendiconti del Circolo Matematico di Palermo (1952 -) Aims and scope Submit manuscript

Abstract

Given Banach spaces \(\mathcal {X}\) and \(\mathcal {Y}\) and Banach space operators \(A\in L(\mathcal {X})\) and \(B\in L(\mathcal {Y}).\) The generalized derivation \(\delta \in L(L(\mathcal {Y},\mathcal {X}))\) is defined by \(\delta (X)=AX-XB.\) In this article necessary and sufficient conditions ensuring that Rakočević’s property (w), on the one hand and its generalization (gw), on the other hand transfer from \(A\) and \(B\) to \(\delta \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aiena, P.: Property (w) and perturbations II. J. Math. Anal. Appl. 342, 830–837 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aiena, P., Biondi, M.T.: Property (w) and perturbations. J. Math. Anal. Appl. 336, 683–692 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aiena, P., Peña, P.: Variations on Weyl’s theorem. J. Math. Anal. Appl. 324, 566–579 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Aiena, P., Guillen, J.R., Peña, P.: Property (w) for perturbations of polaroid operators. Linear Algebra Appl. 428, 1791–1802 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Aiena, P., Biondi, M.T., Villafãne, F.: Property (w) and perturbations III. J. Math. Anal. Appl. 353, 205–214 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Aiena, P., Aponte, E., Balzan, E.: Weyl type theorems for left and right polaroid operators. Intgr. Equ. Oper. Theory 66, 1–20 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Amouch, M.: Weyl type theorems for operators satisfying the single-valued extension property. J. Math. Anal. Appl. 326, 1476–1484 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Amouch, M., Berkani, M.: On the property (gw). Mediterr. J. Math. (Szeged) 5, 769–781 (2008)

    Google Scholar 

  9. Amouch, M., Zguitti, H.: On the equivalencr of Browder’s and generalized Browder’s theorem. Glasg. Math. J. 48, 179–185 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Berkani, M.: Index of B-Fredholm operators and generalization of a Weyl theorem. Proc. Am. Math. Soc. 130, 1717–1723 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Berkani, M., Amouch, M.: Preservation of propety (gw) under perturbations. Acta Sci. Math. (Szeged) 74, 769–781 (2008)

    MATH  MathSciNet  Google Scholar 

  12. Berkan, M., Koliha, J.J.: Weyl type theorems for bounded linear operatrs. Acta Sci. Math. (Szeged) 69, 359–376 (2003)

    MathSciNet  Google Scholar 

  13. Boasso, E., Amouch, M.: Generalized Browder’s and Weyl’s theorems for generalized derivations. Mediterr. J. Math. (2014). doi:10.1007/s00009-014-0398-x

  14. Boasso, E., Duggal, B.P.: Tensor product of left polaoid operators. Acta Sci. Math. (Szeged) 78, 251–264 (2012)

    MATH  MathSciNet  Google Scholar 

  15. Boasso, E., Duggal, B.P., Jeon, I.H.: Generalized Browder’s and Weyl’s theorem for left and right multiplication operators. J. Math. Anal. Appl. 370, 461–471 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Cho, M., Djodjević, S.V., Duggal, B.P., Yamazaki, T.: On an elementary operator with w-hyponormal operator entries. Linear Algebra Appl. 433, 2070–2079 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Drazin, M.P.: Pseudo-inverse in assoiative rings and semigroups. Am. Math. Mon. 65, 506–514 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  18. Duggal, B.P.: Weyl’s theorem for a generalized derivation and an elementary operator. Math. Vesn. 54, 71–81 (2002)

    MATH  MathSciNet  Google Scholar 

  19. Duggal, B.P.: Browder–Weyl theorems, tensor products and multiplications. J. Math. Anal. Appl. 359, 631–636 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Harte, R., Kim, A.-H.: Weyl’s theorem, tensor products and multiplication operators. J. Math. Anal. Appl. 336, 1124–1131 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lombarkia, F., Bachir, A.: Weyl’s and Browder’s theorem for an elementary operator. Math. Vesn. 59, 135–142 (2007)

    MATH  MathSciNet  Google Scholar 

  22. Rakočević, V.: On a class of operators. Mat. Vesn. 37, 423–426 (1985)

    MATH  Google Scholar 

  23. Rakočević, V.: Approximate point spectrum and commuting compact perturbations. Glasg. Math. J. 28, 193–198 (1986)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors wish to express their indebtedness to the referee, for his suggestions and valuable comments on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Amouch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amouch, M., Lombarkia, F. Rakočević’s property for generalized derivations. Rend. Circ. Mat. Palermo 64, 57–66 (2015). https://doi.org/10.1007/s12215-014-0178-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12215-014-0178-2

Keywords

Mathematics Subject Classification

Navigation