Skip to main content
Log in

Independent control of multiple magnetic microrobots: design, dynamic modelling, and control

  • Research Paper
  • Published:
Journal of Micro-Bio Robotics Aims and scope Submit manuscript

Abstract

Swimming microrobots have a variety of applications including drug delivery, sensing, and artificial fertilization. Their small size makes onboard actuation very hard, and therefore an external source such as the magnetic field is a practical way to steer and move the robot. In this paper, we have designed a novel microrobot steered by magnetic paddles. We have also discussed design parameters where, based on the conducted simulation, the robot speed reaches 520 um/s. It is shown that the microrobot speed depends on the robot paddle dimensions. According to the microrobots motion characteristics and their different reactions to the same input, we have designed a steering strategy for point-to-point control of multiple microrobots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kong L, Guan J, Pumera M (2018) Micro-and nanorobots based sensing and biosensing. Curr Opin Electrochem 10:174–182

    Article  Google Scholar 

  2. Kim K, Guo J, Liang Z, Fan D (2018) Artificial micro/nanomachines for bioapplications: biochemical delivery and diagnostic sensing. Adv Funct Mater 28(25):1705867

    Article  Google Scholar 

  3. Jeon S, Hoshiar AK, Kim K, Lee S, Kim E, Lee S, Kim JY, Nelson BJ, Cha HJ, Yi BJ, Choi H (2019) A magnetically controlled soft microrobot steering a guidewire in a three-dimensional phantom vascular network. Soft robotics 6(1):54–68

    Article  Google Scholar 

  4. Pedram A, Nejat Pishkenari H (2017) Smart micro/nano-robotic systems for gene delivery. Current gene therapy 17(2):73–79

    Article  Google Scholar 

  5. Le VH et al (2018) Preparation of tumor targeting cell-based microrobots carrying NIR light sensitive therapeutics manipulated by electromagnetic actuating system and Chemotaxis. Journal of Micro-Bio Robotics 14(3–4):69–77

    Google Scholar 

  6. Yang S, Xu Q (2017) A review on actuation and sensing techniques for MEMS-based microgrippers. Journal of Micro-Bio Robotics 13(1–4):1–14

    Article  Google Scholar 

  7. Purcell EM (1977) Life at low Reynolds number. Am J Phys 45(1):3–11

    Article  Google Scholar 

  8. Zhang, J, M Salehizadeh, and E Diller (2018). Parallel pick and place using two independent untethered mobile magnetic microgrippers. In 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE

  9. Jalali, MA, M-R Alam, and S Mousavi (2014). Quadroar: a versatile low-Reynolds-number swimmer. arXiv preprint arXiv:1408.5428

  10. Mirzakhanloo M, Jalali MA, Alam M-R (2018) Hydrodynamic choreographies of microswimmers. Sci Rep 8(1):3670

    Article  Google Scholar 

  11. Saadat, M, et al. (2019), The experimental realization of an artificial low-reynolds-number swimmer with three-dimensional maneuverability. arXiv preprint arXiv:1905.05893

  12. Peyer KE, Zhang L, Nelson BJ (2013) Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale 5(4):1259–1272

    Article  Google Scholar 

  13. Halder A, Sun Y (2019) Biocompatible propulsion for biomedical micro/nano robotics. Biosens Bioelectron 139:111334

    Article  Google Scholar 

  14. Chen XZ, Jang B, Ahmed D, Hu C, de Marco C, Hoop M, Mushtaq F, Nelson BJ, Pané S (2018) Small-scale machines driven by external power sources. Adv Mater 30(15):1705061

    Article  Google Scholar 

  15. Chen C, Chen L, Wang P, Wu LF, Song T (2019) Steering of magnetotactic bacterial microrobots by focusing magnetic field for targeted pathogen killing. J Magn Magn Mater 479:74–83

    Article  Google Scholar 

  16. Zhang L, Abbott JJ, Dong L, Kratochvil BE, Bell D, Nelson BJ (2009) Artificial bacterial flagella: Fabrication and magnetic control. Appl Phys Lett 94(6):064107

    Article  Google Scholar 

  17. Ghanbari A, Bahrami M, Nobari M (2011) Methodology for artificial microswimming using magnetic actuation. Phys Rev E 83(4):046301

    Article  Google Scholar 

  18. Khalil IS et al (2014) MagnetoSperm: a microrobot that navigates using weak magnetic fields. Appl Phys Lett 104(22):223701

    Article  Google Scholar 

  19. Kim S, Lee S, Lee J, Nelson BJ, Zhang L, Choi H (2016) Fabrication and manipulation of ciliary microrobots with non-reciprocal magnetic actuation. Sci Rep 6:30713

    Article  Google Scholar 

  20. Meng F, Matsunaga D, Yeomans JM, Golestanian R (2019) Magnetically-actuated artificial cilium: a simple theoretical model. Soft Matter 15(19):3864–3871

    Article  Google Scholar 

  21. Shum H (2019) Microswimmer propulsion by two steadily rotating helical flagella. Micromachines 10(1):65

    Article  MathSciNet  Google Scholar 

  22. Chowdhury S, Jing W, Cappelleri DJ (2015) Controlling multiple microrobots: recent progress and future challenges. Journal of Micro-Bio Robotics 10(1–4):1–11

    Article  Google Scholar 

  23. Pawashe C, Floyd S, Sitti M (2009) Multiple magnetic microrobot control using electrostatic anchoring. Appl Phys Lett 94(16):164108

    Article  Google Scholar 

  24. Wong D, Steager EB, Kumar V (2016) Independent control of identical magnetic robots in a plane. IEEE Robotics and Automation Letters 1(1):554–561

    Article  Google Scholar 

  25. Ongaro F et al (2018) Design of an Electromagnetic Setup for independent three-dimensional control of pairs of identical and nonidentical microrobots. IEEE Trans Robot 35(1):174–183

    Article  Google Scholar 

  26. Diller E et al (2011) Control of multiple heterogeneous magnetic microrobots in two dimensions on nonspecialized surfaces. IEEE Trans Robot 28(1):172–182

    Article  Google Scholar 

  27. Huang T-Y, Qiu F, Tung HW, Peyer KE, Shamsudhin N, Pokki J, Zhang L, Chen XB, Nelson BJ, Sakar MS (2014) Cooperative manipulation and transport of microobjects using multiple helical microcarriers. RSC Adv 4(51):26771–26776

    Article  Google Scholar 

  28. Kei Cheang U, Lee K, Julius AA, Kim MJ (2014) Multiple-robot drug delivery strategy through coordinated teams of microswimmers. Appl Phys Lett 105(8):083705

    Article  Google Scholar 

  29. Das S, Steager EB, Hsieh MA, Stebe KJ, Kumar V (2018) Experiments and open-loop control of multiple catalytic microrobots. Journal of Micro-Bio Robotics 14(1–2):25–34

    Article  Google Scholar 

  30. Huang TY, Sakar MS, Mao A, Petruska AJ, Qiu F, Chen XB, Kennedy S, Mooney D, Nelson BJ (2015) 3D printed microtransporters: compound micromachines for spatiotemporally controlled delivery of therapeutic agents. Adv Mater 27(42):6644–6650

    Article  Google Scholar 

  31. Gueron S, Levit-Gurevich K (1998) Computation of the internal forces in cilia: application to ciliary motion, the effects of viscosity, and cilia interactions. Biophys J 74(4):1658–1676

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Nejat Pishkenari.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(AVI 10378 kb)

ESM 2

(AVI 50518 kb)

ESM 3

(AVI 49427 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalesi, R., Nejat Pishkenari, H. & Vossoughi, G. Independent control of multiple magnetic microrobots: design, dynamic modelling, and control. J Micro-Bio Robot 16, 215–224 (2020). https://doi.org/10.1007/s12213-020-00136-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12213-020-00136-1

Keywords

Navigation