Skip to main content
Log in

Roots of Rosa majalis Herrm. as a source of antioxidants and anti-influenza agents

  • Research Paper
  • Published:
Rendiconti Lincei. Scienze Fisiche e Naturali Aims and scope Submit manuscript

Abstract

Rosa majalis Herrm. (Rosaceae) is a shrub widespread throughout Eurasia. In West Siberia, it is cultivated as an ornamental plant and raw material for the manufacture of fruit multivitamin concentrates. Meanwhile, metabolites and biological activities of its roots are poorly studied. The aim of this investigation was to evaluate the potential of ethyl acetate (EtOAc), butanol (ButOH), aqueous ethanol (EtOH), and aqueous (H2O) extracts of R. majalis roots as sources of antioxidant and anti-influenza compounds. Spectrophotometry and HPLC were used for metabolite quantification. Antioxidant activities were determined via the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The antiviral activities were assessed as half-maximal inhibitory concentrations (IC50). The EtOAc extract manifested the highest concentrations of phenolic compounds (53.79 mg g−1 of dry extract) and saponins (48.92 mg g−1). Total gallic acid was the main phenolic compound in all extracts (24.98–38.68 mg g−1). Catechin, free ellagic acid, and total ellagic acid had the highest levels in the EtOAc, H2O, and EtOH extracts, respectively (30.83, 22.38, and 34.95 mg g−1). The EtOAc extract showed the highest free-radical scavenging activity (2.31 trolox equivalents) and anti-influenza effects (IC50 61.8 and 50.3 µg mL−1) against A/Aichi/2/68 (H3N2) and A/Chicken/05/2005 (H5N1), respectively. Our findings indicate good potential of these extracts for drug design against free-radical damage and influenza virus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Al Jabri A, Wigg AMD, Odford JS (1996) Initial in vitro screening of drugs candidates for their potential antiviral activities. In: Mahy BWJ, Kangro HO (eds) Virology methods manual, 1st edn. Academic Press, London, pp 60–74

    Google Scholar 

  • An HJ, Kim IT, Park HJ, Kim HM, Choi JH, Lee KT (2011) Tormentic acid, a triterpenoid saponin, isolated from Rosa rugosa, inhibited LPS-induced iNOS, COX-2, and TNF-α expression through inactivation of the nuclear factor-κb pathway in RAW 264.7 macrophages. Int Immunopharmacol 11:504–510

    Article  CAS  Google Scholar 

  • Badhani B, Sharma N, Kakkar R (2015) Gallic acid: a versatile antioxidant with promising therapeutic and industrial applications. RSC Adv 5:27540–27557

    Article  CAS  Google Scholar 

  • Bernatoniene J, Kopustinskiene DM (2018) The role of catechins in cellular responses to oxidative stress. Molecules 23:965

    Article  Google Scholar 

  • Blainski A, Lopes GC, de Mello JC (2013) Application and analysis of the Folin Ciocalteu method for the determination of the total phenolic content from Limonium brasiliense L. Molecules 18:6852–6865

    Article  CAS  Google Scholar 

  • Boskabady MH, Shafei MN, Saberi Z, Amini S (2011) Pharmacological effects of Rosa damascena. Iran J Basic Med Sci 14:295–307

    CAS  Google Scholar 

  • Butkevičiūtė A, Urbštaitė R, Liaudanskas M, Obelevičius K, Janulis V (2022) Phenolic content and antioxidant activity in fruit of the genus Rosa L. Antioxidants 11:912

    Article  Google Scholar 

  • Cai YZ, Xing J, Sun M, Zhan ZQ, Corke H (2005) Phenolic antioxidants (hydrolyzable tannins, flavonols, and anthocyanins) identified by LC-ESI-MS and MALDI-QIT-TOF MS from Rosa chinensis flowers. J Agric Food Chem 53:9940–9948

    Article  CAS  Google Scholar 

  • Cendrowski A, Ścibisz I, Mitek M, Kieliszek M, Kolniak-Ostek J (2017) Profile of the phenolic compounds of Rosa rugosa petals. J Food Qual 2017:7941347

    Article  Google Scholar 

  • Cheng PW, Ng LT, Chiang LC, Lin CC (2006) Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clin Exp Pharmacol Physiol 33:612–616

    Article  CAS  Google Scholar 

  • Çoruh N, Özdoğan N (2015) Identification and quantification of phenolic components of Rosa heckeliana Tratt roots. J Liq Chromatogr Relat Technol 38:569–578

    Article  Google Scholar 

  • Cunja V, Mikulic-Petkovsek M, Stampar F, Schmitzer V (2014) Compound identification of selected rose species and cultivars: an insight to petal and leaf phenolic profiles. J Am Soc Hort Sci 139:157–166

    Article  CAS  Google Scholar 

  • Dias MI, Barros L, Oliveira MBP, Santos-Buelga C, Ferreira ICF (2015) Phenolic profile and antioxidant properties of commercial and wild Fragaria vesca L. roots: a comparison between hydromethanolic and aqueous extracts. Ind Crops Prod 63:125–132

    Article  CAS  Google Scholar 

  • Enayati A, Salehi A, Alilou M, Stuppner H, Mirzaei H, Omraninava A, Khori V, Yassa N (2022) Six new triterpenoids from the root of Potentilla reptans and their cardioprotective effects in silico. Nat Prod Res 36:2504–2512

    Article  CAS  Google Scholar 

  • Fedoseeva LM (2005) The study of tannins in underground and aboveground vegetative organs of the Bergenia Crassifolia (L.) Fitsch. growing in Altai. Khimiya Rastit Syr’ya 2:45–50 (in Russian)

    Google Scholar 

  • Gansukh E, Kazibwe Z, Pandurangan M, Judy G, Kim DH (2016) Probing the impact of quercetin-7-O-glucoside on influenza virus replication influence. Phytomedicine 23:958–967

    Article  CAS  Google Scholar 

  • Guo LX, Gao X (2013) Antitumor effects and mechanisms of total saponin and total flavonoid extracts from Patrinia villosa (Thunb.) Juss. Afr J Pharm Pharmacol 7:165–171

    Article  Google Scholar 

  • Güven L, Özgen U, Seçen H, Şener SÖ, Badem M, Çelik G, Yayli N (2021) Phytochemical studies on the seeds, pseudofruits, and roots of Rosa pimpinellifolia. J Res Pharm 25:153–163

    Google Scholar 

  • Hu Z, Lin J, Chen J, Cai T, Xia L, Liu Y, Song X, He Z (2021) Overview of viral pneumonia associated with influenza virus, respiratory syncytial virus, and coronavirus, and therapeutics based on natural products of medicinal plants. Front Pharmacol 12:630834

    Article  CAS  Google Scholar 

  • Jain R, Rao B, Tare A (2017) Comparative analysis of the spectrophotometry based total phenolic acid estimation methods. J Anal Chem 72:972–976

    Article  CAS  Google Scholar 

  • Jiang L, Lu M, Rao T, Liu Z, Wu X, An H (2022) Comparative analysis of fruit metabolome using widely targeted metabolomics reveals nutritional characteristics of different Rosa roxburghii Genotypes. Foods 11:850

    Article  CAS  Google Scholar 

  • Kaidash OA, Kostikova VA, Udut EV, Shaykin VV, Kashapov DR (2022) Extracts of Spiraea hypericifolia L. and Spiraea crenata L.: the phenolic profile and biological activities. Plants 11:2728

    Article  CAS  Google Scholar 

  • Kärber G (1931) Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Archiv f Experiment Pathol u Pharmakol 162:480–483

    Article  Google Scholar 

  • Karpova EA, Kukushkina TA, Shaldaeva TM, Pshenichkina YA (2020) Biological active compounds and antioxidant activity of plants from the collection of Central Siberian Botanical Garden. II. Lamiaceae. Proceedings of the international conferences plant diversity: status, trends, conservation concept, Novosibirsk, Russia, 30 September–3 October; Banaev EV, Tomoshevich MA, Zaytseva YG (eds) EDP sciences. Curran Associates, Inc.: Red Hook, New York. Article Number 00033. https://doi.org/10.1051/bioconf/20202400033

  • Kim E, Mok HK, Hyun TK (2022) Variations in the Antioxidant, Anticancer, and Anti-Inflammatory Properties of Different Rosa rugosa Organ Extracts. Agronomy 12:238

    Article  CAS  Google Scholar 

  • Kong L, Li S, Liao Q, Zhang Y, Sun R, Zhu X, Zhang Q, Wang J, Wu X, Fang X, Zhu Y (2013) Oleanolic acid and ursolic acid: novel hepatitis C virus antivirals that inhibit NS5B activity. Antiviral Res 98:44–53

    Article  CAS  Google Scholar 

  • Koohestanian A, Tatari M, Samadi Kazemi M, Asgharzade A, Taghizadeh SF (2022) Phytochemicals, antioxidant activity, and biological activities of Rosa persica root. Erwerbs-Obstbau. https://doi.org/10.1007/s10341-022-00740-4

    Article  Google Scholar 

  • Li YH, Lai CY, Su MC, Cheng JC, Chang YS (2019) Antiviral activity of Portulaca oleracea L. against influenza A viruses. J Ethnopharmacol 241:112013

    Article  Google Scholar 

  • Llorent-Martínez EJ, Ortega-Barrales P, Zengin G, Mocan A, Simirgiotis MJ, Ceylan R, Uysal S, Aktumsek A (2017) Evaluation of antioxidant potential, enzyme inhibition activity and phenolic profile of Lathyrus cicera and Lathyrus digitatus: potential sources of bioactive compounds for the food industry. Food Chem Toxicol 107(Pt B):609–619

    Article  Google Scholar 

  • Mair CE, Grienke U, Wilhelm A, Urban E, Zehl M, Schmidtke M, Rollinger JM (2018) Anti-influenza triterpene saponins from the bark of Burkea africana. J Nat Prod 81:515–523

    Article  CAS  Google Scholar 

  • Moses T, Papadopoulou KK, Osbourn A (2014) Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Crit Rev Biochem Mol Biol 49:439–462

    Article  CAS  Google Scholar 

  • Nowak R, Gawlik-Dziki U (2007) Polyphenols of Rosa L. leaves extracts and their radical scavenging activity. Z Naturforsch C J Biosci 62:32–38

    Article  CAS  Google Scholar 

  • Olech M, Nowak R, Los R, Rzymowska J, Malm A, Chrusciel K (2012) Biological activity and composition of teas and tinctures prepared from Rosa rugosa Thunb. Cent Eur J Biol 7:172–182

    CAS  Google Scholar 

  • Olech M, Nowak R, Załuski D, Kapusta I, Amarowicz R, Oleszek W (2017) Hyaluronidase, acetylcholinesterase inhibiting potential, antioxidant activity, and LC-ESI-MS/MS analysis of polyphenolics of rose (Rosa rugosa Thunb.) teas and tinctures. Int J Food Prop 20(sup1):16–25

    Article  Google Scholar 

  • Olennikov DN, Chemposov VV, Chirikova NK (2021) Metabolites of prickly rose: chemodiversity and digestive-enzyme-inhibiting potential of Rosa acicularis and the main ellagitannin rugosin D. Plants 10:2525

    Article  CAS  Google Scholar 

  • Oproshanska T, Khvorost O, Skrebtsova K, Vitkevicius K (2021) Comparative pharmakognostical study of roots of Rosa majalis Herrm. and Rosa canina L. ScienceRise Pharm Sci 5:71–78

    Article  Google Scholar 

  • Park KH, Jeong MS, Park KJ, Choi YW, Seo SJ, Lee MW (2014) Topical application of Rosa multiflora root extract improves atopic dermatitis-like skin lesions induced by mite antigen in NC/Nga mice. Biol Pharm Bull 37:178–183

    Article  CAS  Google Scholar 

  • Pisarev DI, Martynova NA, Netrebenko NN, Novikov OO, Sorokopudov VN (2009) Saponins and their determination in the rhizomes of aralia manchurian from the Belgorod region. Khimija Rastitel’nogo Syr’ja 4:197–198 ((In Russian))

    Google Scholar 

  • Polumackanycz M, Kaszuba M, Konopacka A, Marzec-Wróblewska U, Wesolowski M, Waleron K, Buciński A, Viapiana A (2020) Phenolic composition and biological properties of wild and commercial dog rose fruits and leaves. Molecules 25:5272

    Article  CAS  Google Scholar 

  • Rosae fructus. The fruits of rosehip (2018) Pharmacopeia article 2.5.0106.18. In: Pharmacopeia of Russian Federation, 14th edn. Volume 4. Ministry of Healthcare of Russian Federation, Moscow, pp 6622–6633

  • Safonova IA, Yatcuk VY, Silenin IA, Safonov AA (2012) Studiyng of phenolic compounds of Rosa majalis (L.) by HPLC-method. Belgorod State University Scientific bulletin. Med Pharm 22:142–145

    Google Scholar 

  • Saha RK, Takahashi T, Kurebayashi Y, Fukushima K, Minami A, Kinbara N, Ichitani M, Sagesaka YM (2010) Suzuki, T. Antiviral effect of strictinin on influenza virus replication. Antiviral Res 88:10–18

    Article  CAS  Google Scholar 

  • Sargin SA (2021) Potential anti-influenza effective plants used in Turkish folk medicine: A review. J Ethnopharmacol 265:113319

    Article  CAS  Google Scholar 

  • Sarikurkcu C, Ozer MS, Tlili N (2019) LC–ESI–MS/MS characterization of phytochemical and enzyme inhibitory effects of different solvent extract of Symphytum anatolicum. Ind Crops Prod 140:111666

    Article  CAS  Google Scholar 

  • Sharifi-Rad J, Quispe C, Castillo CMS, Caroca R, Lazo-Vélez MA, Antonyak H et al (2022) Ellagic acid: a review on its natural sources, chemical stability, and therapeutic potential. Oxid Med Cell Longev 2022:3848084

    Article  Google Scholar 

  • Spearman C (1908) The method of “right and wrong cases” (constant stimuli) without Gauss’s formula. Br J Psychol 2:227–242

    Google Scholar 

  • Stalikas C (2007) Extraction, separation, and detection methods for phenolic acids and flavonoids. J Sep Sci 30:3268–3295

    Article  CAS  Google Scholar 

  • Sun B, Spranger I, Ricardo-da-Silva JM (1998) Critical factors of vanillin assay for catechins and proanthocyanidins. J Agric Food Chem 46:4267–4274

    Article  CAS  Google Scholar 

  • Teplyakova TV, Psurtseva NV, Kosogova TA, Mazurkova NA, Khanin VA, Vlasenko VA (2012) Antiviral activity of polyporoid mushrooms (higher Basidiomycetes) from Altai Mountains (Russia). Int J Med Mushrooms 14:37–45

    Article  Google Scholar 

  • Thao NP, Luyen BT, Jo SH, Hung TM, Cuong NX, Nam NH, Kwon YI, Minh CV, Kim YH (2014) Triterpenoid saponins from the roots of Rosa rugosa Thunb. as rat intestinal sucrase inhibitors. Arch Pharm Res 37:1280–1285

    Article  CAS  Google Scholar 

  • Tošović J, Bren U (2020) Antioxidative action of ellagic acid—a kinetic DFT study. Antioxidants 9:587

    Article  Google Scholar 

  • Walia M, Kumar D, Kumar P, Singh B, Padwad Y, Agnihotri V (2016) Cytotoxic new nortriterpene from roots of Potentilla atrosanguinea var. argyrophylla and its UPLC quantification. Planta Med Int Open 3:e47–e50

    Article  Google Scholar 

  • Wu J, Zhang ZQ, Zhou XD, Yao QY, Chen ZL, Chu LL, Yu HH, Yang YP, Li B, Wang W (2022) New terpenoids from Potentilla freyniana Bornm. and their cytotoxic activities. Molecules 27:3665

    Article  CAS  Google Scholar 

  • Yamada H, Wakamori S, Hirokane T, Ikeuchi K, Matsumoto S (2018) Structural Revisions in Natural Ellagitannins. Molecules 23:1901

    Article  Google Scholar 

  • Yoshida T, Wei-Sheng F, Okuda T (1993) Two polyphenol glycosides and tannins from Rosa cymosa. Phytochemistry 32:1033–1036

    Article  CAS  Google Scholar 

  • Yuan JQ, Yang XZ, Miao JH, Tang CP, Ke CQ, Zhang JB, Ma XJ, Ye Y (2008) New triterpene glucosides from the roots of Rosa laevigata Michx. Molecules 13:2229–2237

    Article  CAS  Google Scholar 

  • Zhao YL, Cai GM, Hong X, Shan LM, Xiao XH (2008) Anti-hepatitis B virus activities of triterpenoid saponin compound from Potentilla anserine L. Phytomedicine 15:253–258

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Plant material from the collection of CSBG SB RAS was used: unique scientific unit (USU) 440534: “Collection of living plants indoors and outdoors.”

Funding

This work was supported by government-funded projects of the CSBG SB RAS (#AAAA-A21-121011290025-2) and the State assignment of State Research Centre of Virology and Biotechnology “Vector,” Federal Service for Surveillance on Consumer Rights Protection and Human Well-being, Russia (30/21).

Author information

Authors and Affiliations

Authors

Contributions

EAK performed studies by means of HPLC, carried out statistical analyses, and wrote the manuscript; VAK performed studies by means of HPLC, drafted the manuscript, and provided critical readings of the manuscript; EPK designed the study and provided critical readings of the manuscript; TMS carried out the DPPH assay and spectrophotometric analyses; OYV collected the samples of the plants, designed the study, and revised the manuscript; NAM designed the antiviral assay and provided critical readings of the manuscript; EIF, OYM, and EVM performed the antiviral assay, prepared tables, and wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Evgeniya A. Karpova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpova, E.A., Kostikova, V.A., Khramova, E.P. et al. Roots of Rosa majalis Herrm. as a source of antioxidants and anti-influenza agents. Rend. Fis. Acc. Lincei 35, 97–108 (2024). https://doi.org/10.1007/s12210-024-01230-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-024-01230-3

Keywords

Navigation