Skip to main content
Log in

Research progress of buckling propagation experiment of deep-water pipelines

  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

In recent years, the extraction of fossil resources, especially oil and gas in deep and ultra-deep water areas has been playing a more important role and been paid more attention to. For this reason, the working depth of submarine pipelines, which are used for the transportation of oil and gas, has been increasing sharply. As the main failure pattern of deep-water pipelines, buckling and its propagation problem have drawn more attention of many research institutions and engineering units around the world. Based on the existing research, the summary of experiments and their outcomes of deep-water pipeline buckling failure is made in this paper. Research status and developing prospects of the experiments of buckling propagation and buckle arrestor are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang Haitao, Chi Qiang, Li Helin et al. Development and application status of submarine pipeline materials for oil and gas transportation[J]. Welded Pipe and Tube, 2014(8): 25–29(in Chinese).

    MathSciNet  Google Scholar 

  2. Wang Wenli. Difficulties and development trend of exploration in deep and ultra-deep water area[J]. China Petroleum Exploration, 2010(4): 71–75(in Chinese).

    Google Scholar 

  3. Madhavan R, Babcock C D, Singer J. On the collapse of long, thick-walled tubes under external pressure and axial tension[J]. Journal of Pressure Vessel Technology, Transactions of the ASME, 1993, 115(1): 15–26.

    Article  Google Scholar 

  4. Park T D, Kyriakides S. On the performance of integral buckle arrestors for offshore pipelines[J]. International Journal of Mechanical Sciences, 1997, 39(6): 643–669.

    Article  Google Scholar 

  5. Lee L H, Kyriakides S. On the arresting efficiency of slipon buckle arrestors for offshore pipelines[J]. International Journal of Mechanical Sciences, 2004, 46(7): 1035–1055.

    Article  Google Scholar 

  6. Toscano R G, Mantovano L O, Ament P M et al. Collapse arrestors for deepwater pipelines: Crossover mechanisms[J]. Computers and Structures, 2008, 86(78): 728–743.

    Article  Google Scholar 

  7. Mantovano L O, Amenta P, Charreau R et al. Finite element modeling and experimental validation of buckle arrestors for deepwater pipelines[J]. Mecanica Computacional, 2006(6): 687–706.

    Google Scholar 

  8. Khalilpasha H, Albermani F. Hyperbaric chamber test of subsea pipelines[J]. Thin-Walled Structures, 2013, 71(13): 1–6.

    Article  Google Scholar 

  9. Albermani F, Khalilpasha H, Karampour H. Propagation buckling in deep sub-sea pipelines[J]. Engineering Structures, 2011, 33(9): 2547–2553.

    Article  Google Scholar 

  10. Gong Shunfeng, Sun Bin, Bao Sheng et al. Buckle propagation of offshore pipelines under external pressure[J]. Marine Structures, 2012, 29(1): 115–130.

    Article  Google Scholar 

  11. Wang Nuosi. Investigation on Buckling and Collapse Mechanisms of Filament-Wound Fiber-Reinforced Composite Pipe under External Pressure and Combined Load[D]. Zhejiang University, Hangzhou, China, 2013(in Chinese).

    Google Scholar 

  12. Liu Yuan, Yu Jianxing, Yu Yang et al. Research of submarine pipeline buckling mechanism[C]. In: Proceedings of the Sixteenth China Marine(Offshore)Engineering Symposium. Dalian, China, 2013, Vol. 1: 426–431(in Chinese).

    Google Scholar 

  13. Yu Jianxing, Sun Zhenzhou, Liu Xiaoxie et al. Ring-truss theory on offshore pipelines buckle propagation[J]. Thin-Walled Structures, 2014, 85: 313–323.

    Article  Google Scholar 

  14. Toscano R G, Timms C M, Dvorkin E N et al. Determination of the collapse and propagation pressure of ultradeepwater pipelines[C]. In: Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering. Cancun, Mexico, 2003, Vol. 2: 721–729.

    Google Scholar 

  15. Toscano R G, Mantovano L, Dvorkin E N. On the numerical calculation of collapse and collapse propagation pressure of steel deep-water pipelines under external pressure and bending: Experimental verification of the finite element results[C]. In: Proceedings of the 4th International Conference on Pipeline Technology. 2004: 1417–1428.

    Google Scholar 

  16. Timms C, Mantovano L, Ernst H A et al. On the influence of the UOE forming process on material properties and collapse pressure of deepwater pipelines. Experimental work[C]. In: Proceedings of the Rio Pipeline Conference and Exposition. 2009.

    Google Scholar 

  17. Yu Jianxing, Bian Xuehang, Yu Yang et al. Full-scale collapse test and numerical simulation of deepwater pipeline[J]. Journal of Tianjin University, 2012, 45(2): 154–159(in Chinese).

    Google Scholar 

  18. Kyogoku T, Tokimasa K, Nakanishi H et al. Experimental study on the effect of axial tension load on the collapse strength of oilwell casing[J]. Society of Petroleum Engineers Journal, 1982, 22(5): 609–615.

    Article  Google Scholar 

  19. Tamano T, Inoue Y. Examination of commercial casing collapse strength under axial loading[J]. Journal of Energy Resources Technology, 1982, 104(4): 343–348.

    Article  Google Scholar 

  20. Mimaki M, Tamano T, Mimaki T et al. Collapse pressure formula under excessive compressive axial stress for commercial casting[J]. Transactions of the Japan Society of Mechanical Engineers, Part A, 2004, 70(700): 1703–1708.

    Article  Google Scholar 

  21. Edmondson Stephen, Heydrich Marcus, Xu Bo et al. Validation of the performance of offshore, deep water insulation[C]. In: Proceedings of the Annual Offshore Technology Conference. Rio De Janeiro, Brazil, 2011, Vol. 1: 633–639.

    Google Scholar 

  22. Toscano R G, Mantovano L O, Amenta P et al. Collapse arrestors for deepwater pipelines: Finite element models and experimental validations for different cross-over mechanisms[C]. In: International Conference on Offshore Mechanics and Arctic Engineering. Hamburg, Germany, 2006: 117–125.

    Google Scholar 

  23. Zhou Chengti, Ma Liang. Full-scale test of ø529 mm pipelines under combined bending and external pressure[J]. Oil & Gas Storage and Transportation, 1990(5): 33–40(in Chinese).

    Google Scholar 

  24. Corona E, Kyriakides S. On the collapse of inelastic tubes under combined bending and pressure[J]. International Journal of Solids and Structures, 1988, 24(5): 505–535.

    Article  Google Scholar 

  25. Corona E, Kyriakides S. Asymmetric collapse modes of pipes under combined bending and external pressure[J]. American Society of Civil Engineers, 2014, 126(12): 1232–1239.

    Google Scholar 

  26. Sakakibara N, Kyriakides S, Corona E. Collapse of partially corroded or worn pipe under external pressure[J]. International Journal of Mechanical Sciences, 2008, 50(12): 1586–1597.

    Article  Google Scholar 

  27. Shen Guojian, Hu Yong, Yin Jun et al. Reliability analysis of 2 000 m multi-purpose deep-sea environment simulator[J]. Journal of Shanghai Jiaotong University, 1990, 24(4): 17–25(in Chinese).

    Google Scholar 

  28. Yao Zhiguang, Qin Yanlong, Zhao Kailong et al. Typical case study in hyperbaric chambers[J]. Petroleum Engineering Construction, 2011(S1): 14–16(in Chinese).

    Google Scholar 

  29. Yang Jin, Liu Shujie, Zhou Jianliang et al. Research of testing apparatus for deep water petroleum engineering[J]. China Petroleum Machinery, 2011, 39(8): 1–3(in Chinese).

    Google Scholar 

  30. Wang Jinlong. The Manufacture of Experiment Equipment for Simulating Deep Sea Pressure and Study on the Influence of Deep Sea Pressure on Corrosion Behaviors of Q235 Mild Steel and 316L Stainless Steel[D]. Ocean University of China, Qingdao, China, 2013(in Chinese).

    Google Scholar 

  31. Andreas Ließsem, Johannes Groß-Weege, Gerhard Knauf et al. On the Unified Theory of Acceptance and Use of Technology[M]. LAP LAMBERT Academic Publishing, 2007.

    Google Scholar 

  32. Gong Shunfeng, Chen Yuan, Jin Weiling et al. Local buckling of deepwater oil-gas pipeline under high hydrostatic pressure[J]. Journal of Zhejiang University: Engineering Science, 2012, 46(1): 14–19(in Chinese).

    Google Scholar 

  33. Farhat C, Wang K G, Main A et al. Dynamic implosion of underwater cylindrical shells: Experiments and computations[J]. International Journal of Solids and Structures, 2013, 50(19): 2943–2961.

    Article  Google Scholar 

  34. MacKay J R, Van Keulen F. A review of external pressure testing techniques for shells including a novel volumecontrol method[J]. Experimental Mechanics, 2010, 50(6): 753–772.

    Article  Google Scholar 

  35. Corradi L, Cammi A, Luzzi L. Nuclear Power-Control, Reliability and Human Factors[M]. 2011: 257–274.

    Google Scholar 

  36. Gu Heyuan, Hou Guoqing, Guo Xue et al. Development of deep-water simulation experimental device for subsea blowout preventer stack control system[J]. Oil Field Equipment, 2013, 42(1): 1–5(in Chinese).

    Google Scholar 

  37. Liu Fukang. Successful development of deep-water simulated experimental pressure device with 72 MPa[J]. Technology and Economy Information of Shipbuilding Industry, 1995(1): 6(in Chinese).

    Google Scholar 

  38. Netto T A. On the effect of narrow and long corrosion defects on the collapse pressure of pipelines[J]. Applied Ocean Research, 2009, 31(2): 75–81.

    Article  Google Scholar 

  39. Chater E, Hutchinson J W. On the propagation of bulges and buckles[J]. Journal of Applied Mechanics, 1984, 51(2): 269–277.

    Article  Google Scholar 

  40. Kyriakides S, Babcock C D, Elyada D. Initiation of propagating buckles from local pipeline damages[J]. Journal of Energy Resources Technology, 1982, 106(1): 79–87.

    Article  Google Scholar 

  41. Dyau J Y, Kyriakides S. On the localization of collapse in cylindrical shells under external pressure[J]. International Journal of Solids and Structures, 1993, 30(4): 463–482.

    Article  Google Scholar 

  42. Park T D, Kyriakides S. On the collapse of dented cylinders under external pressure[J]. International Journal of Mechanical Sciences, 1996, 38(5): 557–578.

    Article  Google Scholar 

  43. Kyriakides S. Propagating instabilities in structures[J]. Advances in Applied Mechanics, 1993, 30: 67–189.

    Article  Google Scholar 

  44. Yu Jianxing, Lin Xiaolong, Yang Yuan et al. Dynamic performance of propagation buckle and integral buckle arrestors in offshore pipelines[J]. Ocean Technology, 2013, 32(2): 60–65(in Chinese).

    Google Scholar 

  45. Kyriakides S, Netto T A. On the dynamics of propagating buckles in pipelines[J]. International Journal of Solids and Structures, 2000, 37(46): 6843–6867.

    Article  MATH  Google Scholar 

  46. Kyriakides S. Buckle propagation in pipe-in-pipe systems. Part I. Experiments[J]. International Journal of Solids and Structures, 2002, 39(2): 351–366.

    Article  MATH  Google Scholar 

  47. Castello X, Estefen S F, Leon H R et al. Design aspects and benefits of sandwich pipes for ultra deepwaters[C]. In: Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering. Honolulu, USA, 2009: 453–459.

    Google Scholar 

  48. Castello X, Estenfen S F. Sandwich pipes for ultra deepwater applications[C]. In: Proceedings of Offshore Technology Conference. 2008.

    Google Scholar 

  49. Arjomandi K, Taheri F. The influence of intra-layer adhesion configuration on the pressure capacity and optimized configuration of sandwich pipes[J]. Ocean Engineering, 2011, 38(17/18): 1869–1882.

    Article  Google Scholar 

  50. Castello X, Estefen S F. Reeling effect on the ultimate strength of sandwich pipes[C]. In: Proceedings of the 24th International Conference on Offshore Mechanics and Arctic Engineering. Halkidiki, Greece, 2005: 489–498.

    Google Scholar 

  51. Arjomandi K, Taheri F. Elastic buckling capacity of bonded and unbonded sandwich pipes under external hydrostatic pressure[J]. Journal of Mechanics of Materials and Structures, 2010, 5(3): 391–408.

    Article  Google Scholar 

  52. Arjomandi K, Taheri F. A new look at the external pressure capacity of sandwich pipes[J]. Marine Structures, 2011, 24(1): 23–42.

    Article  Google Scholar 

  53. Netto T A, Santos J M C, Estefen S F. Sandwich pipes for ultra-deep waters[C]. In: Proceedings of the International Pipeline Conference. Calgary, Canada, 2002: 2093–2101.

    Chapter  Google Scholar 

  54. Estefen S F, Netto T A, Pasqualino I P. Strength analyses of sandwich pipes for ultra deepwaters[J]. Journal of Applied Mechanics, 2005, 72(4): 599–608.

    Article  MATH  Google Scholar 

  55. Castello X, Estefen S F. Limit strength and reeling effects of sandwich pipes with bonded layers[J]. International Journal of Mechanical Sciences, 2007, 49(5): 577–588.

    Article  Google Scholar 

  56. Paz C M, Fu G, Estefen S F et al. Sandwich pipe: Reel-lay installation effects[C]. In: Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering. St. John's, Canada, 2015.

    Google Scholar 

  57. An C, Duan M, Filho R D T et al. Collapse of sandwich pipes with PVA fiber reinforced cementitious composites core under external pressure[J]. Ocean Engineering, 2014, 82(4): 1–13.

    Article  Google Scholar 

  58. Kyriakides S, Netto T A. On the dynamic propagation and arrest of buckles in pipe-in-pipe systems[J]. International Journal of Solids and Structures, 2004, 41(20): 5463–5482.

    Article  Google Scholar 

  59. Dyau J Y, Kyriakides S. On the propagation pressure of long cylindrical shells under external pressure[J]. International Journal of Mechanical Sciences, 1993, 35(8): 675–713.

    Article  Google Scholar 

  60. Netto T A, Kyriakides S. Dynamic performance of integral buckle arrestors for offshore pipelines. Part I. Experiments[J]. International Journal of Mechanical Sciences, 2000, 42(7): 1405–1423.

    Article  Google Scholar 

  61. Netto T A, Kyriakides S. Dynamic performance of integral buckle arrestors for offshore pipelines. Part II. Analysis[J]. International Journal of Mechanical Sciences, 2000, 42(7): 1425–1452.

    Article  Google Scholar 

  62. Kyriakides S. Efficiency limits for slip-on type buckle arrestors for offshore pipelines[J]. Journal of Engineering Mechanics, 2002, 128(1): 102–111.

    Article  Google Scholar 

  63. Olso E, Kyriakides S. Internal ring buckle arrestors for pipe-in-pipe systems[J]. International Journal of Non-Linear Mechanics, 2003, 38(2): 267–284.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxing Yu  (余建星).

Additional information

Supported by the National Natural Science Foundation of China(No. 51239008), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China,(No. 51321065),and the National Basic Research Program of China(“973” Program, No. 2014CB046805).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Wu, M., Sun, Z. et al. Research progress of buckling propagation experiment of deep-water pipelines. Trans. Tianjin Univ. 22, 285–293 (2016). https://doi.org/10.1007/s12209-016-2801-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-016-2801-0

Keywords

Navigation