Skip to main content
Log in

Developing a versatile detail mechanism for NH3 combustion

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Ammonia (NH3) is a carbon-free fuel. Therefore, many researchers have proposed detailed mechanisms for NH3, yet the existing mechanisms have widely varied combinations of reactions and were validated using different experimental datasets. Thus, this study suggests developing a NH3 mechanism by exploring the vast reaction pool of the five existing mechanisms. Several reaction combinations from the reaction pool were tested to validate the experimental datasets. The developed mechanism showed the lowest mean squared error (MSE) among the referenced mechanisms for predicting the ignition delay times (IDT). Furthermore, the MSE of the laminar burning velocity (LBV) prediction was less than those of the three referenced mechanisms. Although the mechanism was developed by employing only NH3 fuel mixtures, the estimated IDT and LBV of NH3/H2 fuel mixtures showed low MSE. Analyses of many tested sample mechanisms revealed that the rate coefficients of NH3 combustion reactions should be further elucidated for enhanced prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AEGL :

Acute exposure guideline levels

CDF :

Cumulative distribution function

DRGEP :

Directed relation graph with error propagation

EOC :

End of compression

ER :

Equivalence ratio

IDT :

Ignition delay time

JSFR :

Jet stirred flow reactor

LBV :

Laminar burning velocity

LFR :

Laminar flow reactor

LFS :

Laminar flame speed

MSE :

Mean squared error

NOx :

Oxides of nitrogen

PES :

Potential energy surface

QCT :

Quasi-classical theory

R :

Universal gas constant

RCM :

Rapid compression machine

RPMD :

Ring-polymer molecular dynamics

ST :

Shock tube

T :

Temperature

References

  1. M. D. Scovell, Explaining hydrogen energy technology acceptance: A critical review, Int. J. Hydrogen Energy, 47(19) (2022) 10441–10459.

    Article  CAS  Google Scholar 

  2. IEA, Today in the Lab–Tomorrow in Energy?, IEA, Paris, France (2020).

    Google Scholar 

  3. H. Kobayashi, A. Hayakawa, K. D. K. A. Somarathne and E. C. Okafor, Science and technology of ammonia combustion, Proc. of the Combustion Institute, 37(1) (2019) 109–133.

    Article  CAS  Google Scholar 

  4. P. J. Linstrom and W. G. Mallard (Eds.), NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg, USA (2023) https://doi.org/10.18434/T4D303.

    Google Scholar 

  5. EPA, Acute Exposure Guideline Levels for Airborne Chemicals, EPA, USA (2022).

    Google Scholar 

  6. EPA, Understanding Global Warming Potentials, EPA, USA (2023).

    Google Scholar 

  7. T. Jin, W. Dong, B. Qiu, C. Xu, Y. Liu and H. Chu, Effect of ammonia on laminar combustion characteristics of methane-air flames at elevated pressures, ACS Omega, 7(18) (2022) 15326–15337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. A. J. Reiter and S.-C. Kong, Demonstration of compression-ignition engine combustion using ammonia in reducing greenhouse gas emissions, Energy & Fuels, 22(5) (2008) 2963–2971.

    Article  CAS  Google Scholar 

  9. L. Yu, W. Zhou, Y. Feng, W. Wang, J. Zhu, Y. Qian and X. Lu, The effect of ammonia addition on the low-temperature autoignition of n-heptane: An experimental and modeling study, Combust Flame, 217 (2020) 4–11.

    Article  ADS  CAS  Google Scholar 

  10. K. Zhang, C. Banyon, J. Bugler, H. J. Curran, A. Rodriguez, O. Herbinet, F. Battin-Leclerc, C. B’Chir and K. A. Heufer, An updated experimental and kinetic modeling study of n-heptane oxidation, Combust Flame, 172 (2016) 116–135.

    Article  ADS  CAS  Google Scholar 

  11. P. Glarborg, J. A. Miller, B. Ruscic and S. J. Klippenstein, Modeling nitrogen chemistry in combustion, Prog Energy Combust Sci, 67 (2018) 31–68.

    Article  Google Scholar 

  12. B.-H. Lee, Y.-H. Bae, S.-H. Cho, G.-M. Kim and C.-H. Jeon, Comprehensive technical review for fundamental characteristics and application of NH3 co-firing with coal, Chemical Engineering Journal, 474 (2023) 145587.

    Article  CAS  Google Scholar 

  13. A. Hayakawa, Y. Arakawa, R. Mimoto, K. D. K. A. Somarathne, T. Kudo and H. Kobayashi, Experimental investigation of stabilization and emission characteristics of ammonia/air premixed flames in a swirl combustor, Int. J. Hydrogen Energy, 42(19) (2017) 14010–14018.

    Article  CAS  Google Scholar 

  14. Z. Tian, Y. Li, L. Zhang, P. Glarborg and F. Qi, An experimental and kinetic modeling study of premixed NH3/CH4/O2/Ar flames at low pressure, Combust Flame, 156(7) (2009) 1413–1426.

    Article  ADS  CAS  Google Scholar 

  15. M. C. Franco, R. C. Rocha, M. Costa and M. Yehia, Characteristics of NH3/H2/air flames in a combustor fired by a swirl and bluff-body stabilized burner, Proc. of the Combustion Institute, 38(4) (2021) 5129–5138.

    Article  CAS  Google Scholar 

  16. Q. Liu, X. Chen, J. Huang, Y. Shen, Y. Zhang and Z. Liu, The characteristics of flame propagation in ammonia/oxygen mixtures, J. Hazard Mater, 363 (2019) 187–196.

    Article  ADS  CAS  PubMed  Google Scholar 

  17. G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. Thomas Bowman, R. K. Hanson, S. Song, W. C. Gardiner, Jr., V. V. Lissianski and Z. Qin, GRIMECH 3.0, http://www.me.berkeley.edu/gri_mech/.

  18. P. Sabia, M. V. Manna, A. Cavaliere, R. Ragucci and M. de Joannon, Ammonia oxidation features in a jet stirred flow reactor the role of NH2 chemistry, Fuel, 276 (2020) 118054.

    Article  CAS  Google Scholar 

  19. A. A. Konnov and J. De Ruyck, Kinetic modeling of the thermal decomposition of ammonia, Combustion Science and Technology, 152(1) (2000) 23–37.

    Article  CAS  Google Scholar 

  20. Y. Song, H. Hashemi, J. M. Christensen, C. Zou, P. Marshall and P. Glarborg, Ammonia oxidation at high pressure and intermediate temperatures, Fuel, 181 (2016) 358–365.

    Article  CAS  Google Scholar 

  21. H. Nakamura, S. Hasegawa and T. Tezuka, Kinetic modeling of ammonia/air weak flames in a micro flow reactor with a controlled temperature profile, Combust Flame, 185 (2017) 16–27.

    Article  ADS  CAS  Google Scholar 

  22. J. Otomo, M. Koshi, T. Mitsumori, H. Iwasaki and K. Yamada, Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion, Int. J. Hydrogen Energy, 43(5) (2018) 3004–3014.

    Article  CAS  Google Scholar 

  23. Y. Zhang, O. Mathieu, E. L. Petersen, G. Bourque and H. J. Curran, Assessing the predictions of a NOx kinetic mechanism on recent hydrogen and syngas experimental data, Combust Flame, 182 (2017) 122–141.

    Article  ADS  CAS  Google Scholar 

  24. T. Cai, D. Zhao and E. Gutmark, Overview of fundamental kinetic mechanisms and emission mitigation in ammonia combustion, Chemical Engineering Journal, 458 (2023) 141391.

    Article  CAS  Google Scholar 

  25. R. Li, A. A. Konnov, G. He, F. Qin and D. Zhang, Chemical mechanism development and reduction for combustion of NH3/H2/CH4 mixtures, Fuel, 257 (2019) 116059.

    Article  CAS  Google Scholar 

  26. Y. Li, C.-W. Zhou, K. P. Somers, K. Zhang and H. J. Curran, The oxidation of 2-butene: A high pressure ignition delay, kinetic modeling study and reactivity comparison with isobutene and 1-butene, Proc. of the Combustion Institute, 36(1) (2017) 403–411.

    Article  CAS  Google Scholar 

  27. K. P. Shrestha, L. Seidel, T. Zeuch and F. Mauss, Detailed kinetic mechanism for the oxidation of ammonia including the formation and reduction of nitrogen oxides, Energy & Fuels, 32(10) (2018) 10202–10217.

    Article  CAS  Google Scholar 

  28. E. C. Okafor, Y. Naito, S. Colson, A. Ichikawa, T. Kudo, A. Hayakawa and H. Kobayashi, Measurement and modelling of the laminar burning velocity of methane-ammonia-air flames at high pressures using a reduced reaction mechanism, Combust Flame, 204 (2019) 162–175.

    Article  ADS  CAS  Google Scholar 

  29. A. Hayakawa, T. Goto, R. Mimoto, Y. Arakawa, T. Kudo and H. Kobayashi, Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures, Fuel, 159 (2015) 98–106.

    Article  CAS  Google Scholar 

  30. U. J. Pfahl, M. C. Ross, J. E. Shepherd, K. O. Pasamehmetoglu and C. Unal, Flammability limits, ignition energy, and flame speeds in H2-CH4-NH3-N2O-O2-–N2 mixtures, Combust Flame, 123(1–2) (2000) 140–158.

    Article  ADS  CAS  Google Scholar 

  31. V. F. Zakaznov, L. A. Kursheva and Z. I. Fedina, Determination of normal flame velocity and critical diameter of flame extinction in ammonia-air mixture, Combust Explos Shock Waves, 14(6) (1978) 710–713.

    Article  Google Scholar 

  32. P. D. Ronney, Effect of chemistry and transport properties on near-limit flames at microgravity, Combustion Science and Technology, 59(1–3) (1988) 123–141.

    Article  CAS  Google Scholar 

  33. K. Takizawa, A. Takahashi, K. Tokuhashi, S. Kondo and A. Sekiya, Burning velocity measurements of nitrogen-containing compounds, J. Hazard Mater, 155(1–2) (2008) 144–152.

    Article  CAS  PubMed  Google Scholar 

  34. Y. Li, M. Bi, B. Li and W. Gao, Explosion behaviors of ammonia-air mixtures, Combustion Science and Technology, 190(10) (2018) 1804–1816.

    Article  CAS  Google Scholar 

  35. S. J. Klippenstein, L. B. Harding, P. Glarborg and J. A. Miller, The role of NNH in NO formation and control, Combust Flame, 158(4) (2011) 774–789.

    Article  ADS  CAS  Google Scholar 

  36. M. Capitelli, R. Celiberto, G. Colonna, F. Esposito, C. Gorse, K. Hassouni, A. Laricchiuta and S. Longo, Fundamental Aspects of Plasma Chemical Physics, Springer New York, USA (2016).

    Book  Google Scholar 

  37. S. Y. Lin, H. Guo, P. Honvault, C. Xu and D. Xie, Accurate quantum mechanical calculations of differential and integral cross sections and rate constant for the O+OH reaction using an ab initio potential energy surface, J. Chem Phys, 128(1) (2008) 014303.

    Article  ADS  PubMed  Google Scholar 

  38. X. Lu, Q. Meng, X. Wang, B. Fu and D. H. Zhang, Rate coefficients of the H + H2O2 → H2 + HO2 reaction on an accurate fundamental invariant-neural network potential energy surface, J. Chem Phys, 149(17) (2018) 174303.

    Article  ADS  PubMed  Google Scholar 

  39. D. Wang, C. Ji, S. Wang, J. Yang and X. Wang, Numerical study of the premixed ammonia-hydrogen combustion under engine-relevant conditions, Int. J. Hydrogen Energy, 46(2) (2021) 2667–2683.

    Article  CAS  Google Scholar 

  40. G. B. Ariemma, G. Sorrentino, R. Ragucci, M. de Joannon and P. l. Sabia, Ammonia/methane combustion: stability and NOx emissions, Combust Flame, 241 (2022) 112071.

    Article  CAS  Google Scholar 

  41. G. J. Gotama, A. Hayakawa, E. C. Okafor, R. Kanoshima, M. Hayashi, T. Kudo and H. Kobayashi, Measurement of the laminar burning velocity and kinetics study of the importance of the hydrogen recovery mechanism of ammonia/hydrogen/air premixed flames, Combust Flame, 236 (2022) 111753.

    Article  CAS  Google Scholar 

  42. S. Zhou, B. Cui, W. Yang, H. Tan, J. Wang, H. Dai, L. Li, Z. ur Rahman, X. Wang, S. Deng and X. Wang, An experimental and kinetic modeling study on NH3/air, NH3/H2/air, NH3/CO/air, and NH3/CH4/air premixed laminar flames at elevated temperature, Combust Flame, 248 (2023) 112536.

    Article  CAS  Google Scholar 

  43. B. Mei, X. Zhang, S. Ma, M. Cui, H. Guo, Z. Cao and Y. Li, Experimental and kinetic modeling investigation on the laminar flame propagation of ammonia under oxygen enrichment and elevated pressure conditions, Combust Flame, 210 (2019) 236–246.

    Article  ADS  CAS  Google Scholar 

  44. C. Lhuillier, P. Brequigny, F. Contino and C. Mounaïm-Rousselle, Experimental investigation on ammonia combustion behavior in a spark-ignition engine by means of laminar and turbulent expanding flames, Proceedings of the Combustion Institute, 38(4) (2021) 5859–5868.

    Article  CAS  Google Scholar 

  45. X. Zhang, S. P. Moosakutty, R. P. Rajan, M. Younes and S. M. Sarathy, Combustion chemistry of ammonia/hydrogen mixtures: Jet-stirred reactor measurements and comprehensive kinetic modeling, Combust Flame, 234 (2021) 111653.

    Article  CAS  Google Scholar 

  46. J. Chen, X. Jiang, X. Qin and Z. Huang, Effect of hydrogen blending on the high temperature auto-ignition of ammonia at elevated pressure, Fuel, 287 (2021) 119563.

    Article  CAS  Google Scholar 

  47. K. N. Osipova, X. Zhang, S. M. Sarathy, O. P. Korobeinichev and A. G. Shmakov, Ammonia and ammonia/hydrogen blends oxidation in a jet-stirred reactor: experimental and numerical study, Fuel, 310 (2022) 122202.

    Article  CAS  Google Scholar 

  48. H. Mikulčić, J. Baleta, X. Wang, J. Wang, F. Qi and F. Wang, Numerical simulation of ammonia/methane/air combustion using reduced chemical kinetics models, Int. J. Hydrogen Energy, 46(45) (2021) 23548–23563.

    Article  Google Scholar 

  49. T. Cai, D. Zhao, S. H. Chan and M. Shahsavari, Tailoring reduced mechanisms for predicting flame propagation and ignition characteristics in ammonia and ammonia/hydrogen mixtures, Energy, 260 (2022) 125090.

    Article  CAS  Google Scholar 

  50. B. Jin, Y. F. Deng, G. Li and H. Li, Experimental and numerical study of the laminar burning velocity of NH3/H2/air premixed flames at elevated pressure and temperature, Int. J. Hydrogen Energy, 47(85) (2022) 36046–36057.

    Article  CAS  Google Scholar 

  51. R. Kanoshima, A. Hayakawa, T. Kudo, E. C. Okafor, S. Colson, A. Ichikawa, T. Kudo and H. Kobayashi, Effects of initial mixture temperature and pressure on laminar burning velocity and Markstein length of ammonia/air premixed laminar flames, Fuel, 310 (2022) 122149.

    Article  CAS  Google Scholar 

  52. X. He, B. Shu, D. Nascimento, K. Moshammer, M. Costa and R. X. Fernandes, Auto-ignition kinetics of ammonia and ammonia/hydrogen mixtures at intermediate temperatures and high pressures, Combust Flame, 206 (2019) 189–200.

    Article  ADS  CAS  Google Scholar 

  53. O. Mathieu and E. L. Petersen, Experimental and modeling study on the high-temperature oxidation of ammonia and related NOx chemistry, Combust Flame, 162(3) (2015) 554–570.

    Article  ADS  CAS  Google Scholar 

  54. D. G. Goodwin, H. K. Moffat, I. Schoegl, R. L. Speth and B. W. Weber, Cantera: An Object-oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes, Cantera (2023) Version 3.0.0, doi:https://doi.org/10.5281/zenodo.8137090.

  55. X. Han, Z. Wang, M. Costa, Z. Sun, Y. He and K. Cen, Experimental and kinetic modeling study of laminar burning velocities of NH3/air, NH3/H2/air, NH3/CO/air and NH3/CH4/air premixed flames, Combust Flame, 206 (2019) 214–226.

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korea Evaluation Institute of Industrial Technology (KEIT) and the Ministry of Trade, Industry, & Energy (MOTIE) of the Republic of Korea (No. RS-2022-00155547).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-kyun Im.

Additional information

Serang Kwon is a graduate student of the department of Mechanical Engineering, Korea University, Seoul, Korea. Her research interests include ammonia combustion, non-thermal plasma, waste-to-energy, and plastic reforming.

Seong-kyun Im is an Associate Professor of the Department of Mechanical Engineering, Korea University, Seoul, Korea. Prior to the current position, he was an Assistant Professor at the University of Notre Dame and Worcester Polytechnic Institute. He received his Ph.D. in Mechanical Engineering from Stanford University. His research interests include combustion, propulsion, chemical kinetics, plasma-assisted technologies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, S., Im, Sk. Developing a versatile detail mechanism for NH3 combustion. J Mech Sci Technol 38, 1585–1599 (2024). https://doi.org/10.1007/s12206-024-0249-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-024-0249-z

Keywords

Navigation