Skip to main content
Log in

Development of force measurement technique for preheated model in hypersonic combined test facility

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

This paper presents a new force measurement technique to investigate the effect of aerothermodynamic phenomena, particularly aerodynamic heating, on aerodynamic forces. This technique is successfully applied within a hypersonic combined test facility that integrates arc-jet and shock tunnel. A preheated model transport system is developed to axially immobilize the model during preheating, safe transport to the shock tunnel, and ensure quasi-free-body axial motion during force measurement tests. A comparative evaluation revealed a significant 11.2 % increase in drag coefficient for test models preheated in the arc-jet tunnel, followed by an 8.56 % decrease when cooled to room temperature. By closely comparing drag coefficients under three conditions (cold, hot, and cooled), this study analyzes the distinct effects of ablation-induced shape change and surface temperature on drag coefficients, respectively. This technique allows for a more realistic simulation of hypersonic flight conditions within ground test facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

T w :

Wall temperature

T 0 :

Total temperature

t, t 1∼3,t op :

Operating time

f(t) :

External force

g(t) :

Dynamic function

y(t) :

Output of the system

T :

Time shift dummy for the convolution integral

P pt :

Pitot pressure

q s″:

Heat flux

H CL :

Center line enthalpy

H ave :

Mass averaged enthalpy

U :

Freestream velocity

P :

Freestream pressure

T :

Freestream temperature

M :

Freestream Mach number

M s :

Inciden shock Mach number

P 0 :

Pressure of the reservoir gas

T 0 :

Temperature of the reservoir gas

C D :

Drag coefficient

Y :

Specific heat ratio

D :

Drag force

A :

Cross-sectional area

References

  1. R. D. Quinn, A Method for Calculating Transient Surface Temperatures and Surface Heating Rates for High-Speed Aircraft, NASA, USA (2000) NASA/TP-2000-209034.

    Google Scholar 

  2. Y. Zhu, W. Zhu, D. Gu, C. Lee and C. Smith, Hypersonic transition over a heated wall, Physics of Fluids, 33 (10) (2021) 101706.

    Article  ADS  CAS  Google Scholar 

  3. R. Oddo, J. L. Hill, M. F. Reeder, D. Chin, J. Embrador, J. Komives, M. Tufts, M. Borg and J. S. Jewell, Effect of surface cooling on second-mode dominated hypersonic boundary layer transition, Experiments in Fluids, 62 (7) (2021) 144.

    Article  ADS  Google Scholar 

  4. A. Klothakis, H. Quintanilha Jr, S. S. Sawant, E. Protopapadakis, V. Theofilis and D. A. Levin, Linear stability analysis of hypersonic boundary layers computed by a kinetic approach: A semiinfinite flat plate at 4.5 ≤ M∈ ≤ 9, Theoretical and Computational Fluid Dynamics, 36(1) (2022) 117–139.

    Article  ADS  Google Scholar 

  5. H. Yang, H. Liang, C. Zhang, Y. Wu, H. Zong, Z. Su, Y. Kong, D. Zhang and Y. Li, Investigation of hypersonic cone boundary layer stability regulation with plasma actuation, Physics of Fluids, 35 (2) (2023) 024112.

    Article  ADS  CAS  Google Scholar 

  6. H. L. Kline, C.-L. Chang and F. Li, Hypersonic chemically reacting boundary-layer stability using LASTRAC, 2018 Fluid Dynamics Conference, Atlanta, Georgia, USA (2018).

  7. H. Yang, H. Liang, S. Guo, M. Tang, C. Zhang, Y. Wu and Y. Li, Research progress of hypersonic boundary layer transition control experiments, Advances in Aerodynamics, 4 (1) (2022) 18.

    Article  ADS  Google Scholar 

  8. Q. Liu, Z. Luo, Y. Zhou, W. Xie and S. Dong, On the drag reduction mechanism of hypersonic turbulent boundary layers subject to heated wall blowing, Advances in Aerodynamics, 5 (1) (2023) 7.

    Article  ADS  Google Scholar 

  9. G. D. Wannenwetsch and W. R. Martindale, Roughness and Wall Temperature Effects on Boundary Layer Transition on a 0.0175-Scale Space Shuttle Orbiter Model Tested at Mach Number 8, Defense Technical Information Center, USA (1977).

    Google Scholar 

  10. E. H. Hirschel, Hot experimental technique: a new requirement of aerothermodynamics, New Trends in Instrumentation for Hypersonic Research, Springer, Dordrecht, Netherlands (1993) 25–39.

    Chapter  Google Scholar 

  11. M. Bleiebens and H. Olivier, Surface temperature effects on shock-wave boundary-layer interaction of ramp flows, New Results in Numerical and Experimental Fluid Mechanics III, Springer, Berlin, Germany (2002) 161–168.

    Chapter  Google Scholar 

  12. A. Kovachevich, A. Paull and T. McIntyre, Investigation of an intake injected hot wall scramjet, 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA (2004) AIAA 2004–1037.

  13. A. L. Kovachevich, K. M. Hajek, T. J. McIntyre, A. Paull and M. Abdel-jawad, Imaging of hydrogen fuel injection on the intake of a heated wall scramjet, 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Sacramento, California, USA (2006) AIAA 2006–5039.

  14. M. Bleilebens and H. Olivier, On the influence of elevated surface temperatures on hypersonic shock wave/boundary layer interaction at a heated ramp model, Shock Waves, 15 (5) (2006) 301–312.

    Article  ADS  Google Scholar 

  15. C. Fischer and H. Olivier, Experimental investigation of the internal flow field of a scramjet engine, 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference, Berlin, Germany (2009) AIAA 2009–7369.

  16. C. Fischer and H. Olivier, Experimental investigation of the shock train in an isolator of a scramjet inlet, 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, San Francisco, California, USA (2011) AIAA 2011–2220.

  17. F. Zander, R. Morgan, U. Sheikh, D. Buttsworth and P. Teakle, Hot-wall reentry resting in hypersonic impulse facilities, AIAA Journal, 51 (2) (2013) 476–484.

    Article  ADS  Google Scholar 

  18. C. R. Alba, R. B. Greendyke and J. Marschall, Development of a nonequilibrium finite-rate ablation model for radiating Earth reentry flows, Journal of Spacecraft and Rockets, 53 (1) (2016) 98–120.

    Article  ADS  Google Scholar 

  19. S. W. Lewis, R. G. Morgan, T. J. McIntyre, C. R. Alba and R. B. Greendyke, Expansion tunnel experiments of earth reentry flow with surface ablation, Journal of Spacecraft and Rockets, 53 (5) (2016) 887–899.

    Article  ADS  Google Scholar 

  20. J. Vennik, A. J. Neely, S. Tuttle, R. Choudhury and D. R. Buttworth, Reproducing non-uniform surface temperature profiles on hypersonic cruise vehicles in impulsive wind tunnels, 21st AIAA International Space Planes and Hypersonics Technologies Conference, Xiamen, China (2017) AIAA 2017–2194.

  21. A. Wagner, J. M. Schramm, K. Hannemann, R. Whitside and J.-P. Hickey, Hypersonic shock wave boundary layer interaction studies on a flat plate at elevated surface temperature, Shock Wave Interactions, Springer International Publishing, Cham, Switzerland (2018) 231–243.

    Chapter  Google Scholar 

  22. S. W. Lewis, C. M. James, R. G. Morgan, T. J. McIntyre, C. R. Alba and R. B. Greendyke, Carbon ablative shock-layer radiation with high surface temperatures, Journal of Thermophysics and Heat Transfer, 31 (1) (2017) 193–204.

    Article  CAS  Google Scholar 

  23. S. W. Lewis, C. M. James, R. Ravichandran, R. G. Morgan and T. J. McIntyre, Carbon ablation in hypervelocity air and nitrogen shock layers, Journal of Thermophysics and Heat Transfer, 32 (2) (2018) 449–468.

    Article  CAS  Google Scholar 

  24. S. Gai, A. Neely, H. Kleine, L. P. McQuellin, G. M. Currao and A. Khraibut, Effects of Wall Temperature in High Enthalpy Rarefied Hypersonic Separated Flow, AFRL, USA (2019) AFRL-AFOSR-JP-TR-2019-0061.

    Google Scholar 

  25. R. Ravichandran, D. R. Buttsworth, S. W. Lewis, R. G. Morgan and T. J. McIntyre, Filtered image thermography for high temperatures in hypersonic preheated ablation experiments, Journal of Thermophysics and Heat Transfer, 33 (4) (2019) 1074–1084.

    Article  CAS  Google Scholar 

  26. R. Ravicandran, S. W. Lewis, C. M. James, R. G. Morgan and T. J. McIntyre, Graphite ablation and radiation on interaction with hypervelocity earth-entry flows, Journal of Thermophysics and Heat Transfer, 35 (2) (2021) 335–348.

    Article  Google Scholar 

  27. E. W. K. Chang, W. Y. Chan, K. J. Hopkins, T. J. McIntyre and A. Veeraragavan, Electrically-heated flat plate testing in a free-piston driven shock tunnel, Aerospace Science and Technology, 103 (2020) 105856.

    Article  Google Scholar 

  28. S. Yang, I. Choi and G. Park, Development of combined hypersonic test facility for aerothermodynamic testing, PLOS One (2024) https://doi.org/10.1371/journal.pone.0298113.

  29. J. M. A. Longo, Aerothermodynamics - A critical review at DLR, Aerospace Science and Technology, 7 (6) (2003) 429–438.

    Article  Google Scholar 

  30. K.-H. Kim, Numerical investigation of plasma flows inside segmented constrictor type arc-heater, Aeronautics and Astronautics, InTechOpen (2011).

  31. P. Gaetani, A. Guardone and G. Persico, Shock tube flows past partially opened diaphrams, Journal of Fluid Mechanics, 602 (2008) 267–286.

    Article  ADS  Google Scholar 

  32. D. R. White, Influence of diaphragm opening time on shock-tube flows, Journal of Fluid Mechanics, 4 (6) (1958) 585–599.

    Article  ADS  Google Scholar 

  33. T. Hideyuki, K. Tomoyuki, S. Kazuo and I. Katsuhiro, Free-flight force measurement technique in the impulsive facility HIEST, 2007 22nd International Congress on Instrumentation in Aerospace Simulation Facilities, Pacific Grove, California, USA (2007) 1–5.

  34. H. Tanno, T. Komuro, K. Sato and K. Itoh, Aerodynamic force measurement technique with accelerometer in the impulse facility HIEST, Shock Waves, Springer, Berlin, Heidelberg (2009) 471–476.

    Chapter  Google Scholar 

  35. Y. Wang and Z. Jiang, Impulse force-measurement system, Shock Waves, 30 (6) (2020) 603–613.

    Article  ADS  Google Scholar 

  36. K. Kim, B. Jang, S. Lee and G. Park, Assessment of drag measurement techniques in a shock tunnel, PLoS One, 17 (7) (2022) e0270743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. C. Luo, Y. Wang, Z. Hu, J. Li and Z. Jiang, Weighting by cross-validation: a calibration method for force measurements via transient response analysis, Experimental Techniques, 43 (2019) 469–478.

    Article  Google Scholar 

  38. D. J. Mee, Dynamic calibration of force balances for impulse hypersonic facilities, Shock Waves, 12 (2003) 443–455.

    Article  ADS  Google Scholar 

  39. J. D. Anderson Jr., Hypersonic and High-Temperature Gas Dynamics, 2nd Ed., American Institute of Aeronautics and Astronautics, Inc., Virginia, USA (2006).

    Book  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF), (No.2021R1A4A1032783). The authors would like to thank the foundation for the financial support received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gisu Park.

Additional information

Sungmo Yang is a Ph.D. candidate in the Department of Aerospace Engineering at Korea Advanced Institute of Science and Technology. His research interests include aerothermodynamic test of hypersonic in ground-based test facilities.

Ilsung Choi is a Ph.D. candidate in the Department of Aerospace Engineering at Korea Advanced Institute of Science and Technology. His research interests include reentry aerothermodynamics and ground based hypersonic test.

Gisu Park is an Associate Professor in Department of Aerospace Engineering at Korea Advanced Institute of Science and Technology. His research interests include hypersonic aerothermodynamics, ground test facilities and instrumentations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Choi, I. & Park, G. Development of force measurement technique for preheated model in hypersonic combined test facility. J Mech Sci Technol 38, 1293–1304 (2024). https://doi.org/10.1007/s12206-024-0224-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-024-0224-8

Keywords

Navigation