Skip to main content
Log in

A comparison of the erosive wear performance of particle reinforced aluminum matrix composites

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Erosive wear is an important industrial issue that needs addressing to avoid failures in the erosive media channels. The current study reports the engineering efforts to enhance the wear performance of ceramic particle (SiC/Al2O3) reinforced AA5083 alloy exposed to low velocity steel erodent particles. Replacing the ceramic reinforcement with particles that have better bonding tendencies with the matrix and larger particle size (∼5 times) improved the erosive wear performance (as much as 21.28 %). While the improvement margins were much more prominent at oblique (30° and 60°) angles compared to 90°, the wear loss was mainly driven by particle dislodgement, cavity formation and matrix trimming. The particle dislodgment and fragmentation were oppressed for larger Al2O3 particles at oblique angles that resulted in improved wear response. For 90° impingement, the overall wear loss was controlled by the ceramic content and excessive wear happened in the matrix through micro-cutting, chipping and ceramic particle fragmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C ps :

Ceramic particles

EDS :

Energy dispersive spectroscopy

AMC :

Aluminum matrix composites

PM :

Powder metallurgy

References

  1. M. M. Khan and G. Dixit, Comparative study on erosive wear response of SiC reinforced and fly ash reinforced aluminium based metal matrix composite, Materials Today: Proceedings, 4 (9) (2017) 10093–10098, https://doi.org/10.1016/j.matpr.2017.06.327.

    Google Scholar 

  2. M. Ramachandra and K. Radhakrishna, Sliding wear, slurry erosive wear, and corrosive wear of aluminium/SiC composite, Materials Science-Poland, 24 (2/1) (2006) 333–349.

    CAS  Google Scholar 

  3. S. Selvi and E. Rajasekar, Theoretical and experimental investigation of wear characteristics of aluminum based metal matrix composites using RSM, J. Mech. Sci. Technol., 29 (2) (2015) 785–792, https://doi.org/10.1007/s12206-015-0140-z.

    Article  Google Scholar 

  4. N. Panwar and A. Chauhan, Fabrication methods of particulate reinforced aluminium metal matrix composite-a review, Mater. Today: Proc., 5 (2) (2018) 5933–5939, https://doi.org/10.1016/j.matpr.2017.12.194.

    CAS  Google Scholar 

  5. J. Shafique and H. Alrobei, Structural and mechanical properties of friction stir welded Al2O3 and SiC reinforced Al 7075 alloys, J. Mech. Sci. Technol., 35 (4) (2021) 1437–1444, https://doi.org/10.1007/s12206-021-0309-6.

    Article  Google Scholar 

  6. H. M. Yehia and N. Abdelalim, Characterization of swarf Al/(Al2O3/GNs) Ag composite fabricated using stir casting and rolling process, J. Mech. Sci. Technol., 37 (4) (2023) 1803–1809, https://doi.org/10.1007/s12206-023-0320-1.

    Article  Google Scholar 

  7. M. Yadav, L. A. Kumaraswamidhas and S. K. Singh, Investigation of solid particle erosion behavior of Al-Al2O3 and Al-ZrO2 metal matrix composites fabricated through powder metallurgy technique, Tribology International, 172 (2022) 107636, https://doi.org/10.1016/j.triboint.2022.107636.

    Article  CAS  Google Scholar 

  8. H. Alrobei, Effect of different parameters and aging time on wear resistance and hardness of SiC-B4C reinforced AA6061 alloy, J. Mech. Sci. Technol., 34 (5) (2020) 2027–2034, https://doi.org/10.1007/s12206-020-0424-9.

    Article  Google Scholar 

  9. A. Bahri and R. Askarnia, Mechanical and electrochemical behaviors assessments of aluminum-graphene oxide composites fabricated by mechanical milling and repetitive upsetting extrusion, J. Compos. Compd., 3 (8) (2021) 152–158, https://doi.org/10.52547/jcc.3.3.1.

    Google Scholar 

  10. N. K. Bhoi, H. Singh and S. Pratap, Developments in the aluminum metal matrix composites reinforced by micro/nano particles–a review, Journal of Composite Materials, 54 (6) (2020) 813–833, https://doi.org/10.1177/0021998319865307.

    Article  CAS  ADS  Google Scholar 

  11. D. K. Sharma, M. Sharma and G. Upadhyay, Boron carbide (B4C) reinforced aluminum matrix composites (AMCs), Int. J. Innovative Technol. Exploring Eng., 9 (1) (2019) 2194–2203, https://doi.org/10.35940/ijitee.A4766.119119.

    Article  Google Scholar 

  12. M. Alizadeh, M. H. Paydar and F. Sharifian Jazi, Structural evaluation and mechanical properties of nanostructured Al/B4C composite fabricated by ARB process, Compos. B. Eng., 44 (1) (2013) 339–343, https://doi.org/10.1016/j.compositesb.2012.04.069.

    Article  CAS  Google Scholar 

  13. R. Dasgupta, Aluminium alloy-based metal matrix composites: a potential material for wear resistant applications, International Scholarly Research Notices, 2012 (2012) 594573 https://doi.org/10.5402/2012/594573.

    Google Scholar 

  14. Z. Hao, Y. Ju and L. Chen, The use of aluminium and magnesium alloys in automotive lightweight technologies, J. Mech. Sci. Technol., 37 (9) (2023) 4615–4622, https://doi.org/10.1007/s12206-023-0712-2.

    Article  Google Scholar 

  15. K. A. M. Alharbi and F. Gamaoun, Mechanical properties and wear resistance of nano Al/SiC composites fabricated via APB, Human and Ecological Risk Assessment: An International Journal, 29 (2) (2023) 463–470.

    Article  CAS  Google Scholar 

  16. S. R. Biswal and S. Sahoo, Study on wear and corrosive behavior of novel Al/Al2O3/SiC/WS2 hybrid composites, Materials Today: Proceedings (2023) (in press).

  17. M. K. Kutzhanov and A. T. Matveev, Microwave plasma-produced Al/Al2O3 microparticles as precursors for high-temperature high-strength composites, J. of Alloys and Compounds, 972 (2023) 172879.

    Article  Google Scholar 

  18. M. H. Adib and R. Abedinzadeh, Study of mechanical properties and wear behavior of hybrid Al/(Al2O3+ SiC) nanocomposites fabricated by powder technology, Materials Chemistry and Physics, 305 (2023) 127922.

    Article  CAS  Google Scholar 

  19. S. A. A. Alem and R. Latifi, Microwave sintering of ceramic reinforced metal matrix composites and their properties: a review, Materials and Manufacturing Processes, 35 (3) (2020) 303–327, https://doi.org/10.1080/10426914.2020.1718698.

    Article  CAS  Google Scholar 

  20. S. Caron and P. Thibault, Erosion resistance of aluminum matrix composites, Processing of Ceramic and Metal Matrix Composites, Proceedings of Metallurgical Society of Canadian Institute of Mining and Metallurgy, Elsevier Ltd. (1989) 424–432.

  21. S. Turenne and Y. Chatigny, The effect of abrasive particle size on the slurry erosion resistance of particulate-reinforced aluminium alloy, Wear, 141 (1) (1990) 147–158, https://doi.org/10.1016/0043-1648(90)90199-K.

    Article  CAS  Google Scholar 

  22. S. Chand and P. Chandrasekhar, Influence of B4C/BN on solid particle erosion of Al6061 metal matrix hybrid composites fabricated through powder metallurgy technique, Ceramics International, 46 (11) (2020) 17621–17630, https://doi.org/10.1016/j.ceramint.2020.04.064.

    Article  CAS  Google Scholar 

  23. E. Chantziara and K. Lentzaris, Sliding wear and solid particle erosion response of aluminium reinforced with tungsten carbide nanoparticles and aluminide particles, Fatigue and Fracture of Engineering Materials and Structures, 42 (7) (2019) 1548–1562, https://doi.org/10.1111/ffe.13018.

    Article  Google Scholar 

  24. X. R. Xavier and S. J. Jaisingh, Synthesis and characterization of AA7050 - TiO2 reinforced aluminium matrix composite, J. Mech. Sci. Technol., 35 (11) (2021) 4917–4924, https://doi.org/10.1007/s12206-021-1010-5.

    Article  Google Scholar 

  25. J. P. Tu and J. Pan, The solid particle erosion behavior of Al18B4O33 whisker-reinforced AC4C al alloy matrix composites, Wear, 223 (1) (1998) 22–30, https://doi.org/10.1016/S0043-1648(98)00295-6.

    Article  CAS  Google Scholar 

  26. S. Turenne, D. Simard and M. Fiset, Influence of structural parameters on the slurry erosion resistance of squeeze-cast metal matrix composites, Wear, 149 (1) (1991) 187–197, https://doi.org/10.1016/0043-1648(91)90372-2.

    Article  CAS  Google Scholar 

  27. M. Saxena and O. P. Modi, Erosion and corrosion characteristics of an aluminium alloy-alumina fibre composite, Wear, 169 (1) (1993) 119–124, https://doi.org/10.1016/0043-1648(93)90397-5.

    Article  CAS  Google Scholar 

  28. S. Das, Development of aluminium alloy composites for engineering applications, Trans. Indian Inst. Met., 57 (4) (2004) 325–334.

    CAS  Google Scholar 

  29. N. Miyazaki and S. Funakura, Solid particle erosion behavior of metal matrix composites, J. of Composite Materials, 30 (15) (1996) 1670–1682, https://doi.org/10.1177/002199839603001503.

    Article  CAS  ADS  Google Scholar 

  30. S. Aribo and A. Fakorede, Erosion-corrosion behaviour of aluminum alloy 6063 hybrid composite, Wear, 376–377 (2017) 608–614, https://doi.org/10.1016/j.wear.2017.01.034.

    Article  Google Scholar 

  31. R. A. Saravanan, M. K. Surappa and B. N. Pramila Bai, Erosion of A356 Al SiCμ composites due to multiple particle impact, Wear, 202 (2) (1997) 154–164, https://doi.org/10.1016/S0043-1648(96)07264-X.

    Article  CAS  Google Scholar 

  32. S. Kumar, V. Subramanya Sarma and B. S. Murty, A statistical analysis on erosion wear behaviour of A356 alloy reinforced with in situ formed TiB2 particles, Mater. Sci. Eng. A, 476 (2008) 333–340, https://doi.org/10.1016/j.msea.2007.04.113.

    Article  Google Scholar 

  33. S. Das, D. P. Mondal and S. Sawla, Solid particle erosion of Al alloy and Al-alloy composites: effect of heat treatment and angle of impingement, Met. Mater. Trans. A, 35 (2004) 1369–1379, https://doi.org/10.1007/s11661-004-1011-x.

    Article  Google Scholar 

  34. V. B. Nguyen and Q. B. Nguyen, Effect of particle size on erosion characteristics, Wear, 348 (2016) 126–137, https://doi.org/10.1016/j.wear.2015.12.003.

    Article  Google Scholar 

  35. A. K. Jha and R. Batham, Effect of impinging angle and rotating speed on erosion behavior of aluminum, Transactions of Nonferrous Metals Society of China, 21 (1) (2011) 32–38, https://doi.org/10.1016/S1003-6326(11)60674-2.

    Article  CAS  Google Scholar 

  36. H. M. N. Zafar and F. Nair, Fabrication and microscale characterization of iron matrix composite wires reinforced by in situ synthesized iron boride phases, Arabian J. for Science and Engineering, 48 (3) (2023) 3909–3930, https://doi.org/10.1007/s13369-022-07320-4.

    Article  CAS  Google Scholar 

  37. E. B. Moustafa and A. Melaibari, Tribological and mechanical characteristics of AA5083 alloy reinforced by hybridising heavy ceramic particles Ta2C & VC with light GNP and Al2O3 nanoparticles, Ceramics International, 48 (4) (2022) 4710–4721, https://doi.org/10.1016/j.ceramint.2021.11.007.

    Article  CAS  Google Scholar 

  38. H. I. Kurt, Influence of hybrid ratio and friction stir processing parameters on ultimate tensile strength of 5083 aluminum matrix hybrid composites, Composites Part B: Engineering, 93 (2016) 26–34, https://doi.org/10.1016/j.compositesb.2016.02.056.

    Article  CAS  Google Scholar 

  39. J. Lin and C. Wang, A study of surface quality and mechanical strength in 5083 aluminum alloy plates using pulsed laser cleaning, J. Mech. Sci. Technol., 36 (10) (2022) 5223–5229, https://doi.org/10.1007/s12206-022-0935-7.

    Article  Google Scholar 

  40. R. V. Vignesh and R. Padmanaban, Intergranular corrosion susceptibility of friction stir processed aluminium alloy 5083, Materials Today: Proceedings, 5 (8) (2018) 16443–16452, https://doi.org/10.1016/j.matpr.2018.05.143.

    CAS  Google Scholar 

  41. K. M. Shorowordi and T. Laoui, Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composites: a comparative study, J. of Materials Processing Technology, 142 (3) (2003) 738–743, https://doi.org/10.1016/S0924-0136(03)00815-X.

    Article  CAS  Google Scholar 

  42. R. Arora and S. Kumar, Role of different range of particle size on wear characteristics of al-rutile composites, Part. Sci. Technol., 33 (2015) 229–233, https://doi.org/10.1080/02726351.2014.953648.

    Article  CAS  Google Scholar 

  43. M. A. Chowdhury and U. K. Debnath, Experimental evaluation of erosion of gunmetal under asymmetrical shaped sand particle, Adv. Tribol., 2015 (2015) 35, https://doi.org/10.1155/2015/815179.

    Article  Google Scholar 

  44. A. Wang and I. M. Hutchings, Two-body abrasive wear of alumina fiber-aluminium matrix composite, Mater. Sci. Technol., 5 (1989) 71–76.

    Article  CAS  ADS  Google Scholar 

  45. F. Nair and H. M. N. Zafar, Analyzing the influence of simultaneously austenitization and multi-directional boriding on the surface and subsurface of H13 tool steel, J. of Materials Engineering and Performance, 31 (12) (2022) 9791–9801, https://doi.org/10.1007/s11665-022-07036-4.

    Article  CAS  ADS  Google Scholar 

  46. T. Alam and Z. N. Farhat, Slurry erosion surface damage under normal impact for pipeline steels, Engineering Failure Analysis, 90 (2018) 116–128, https://doi.org/10.1016/j.eng-failanal.2018.03.019.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafız Muhammad Numan Zafar.

Ethics declarations

Authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Kemal Yıldızlı is a Professor of Mechanical Engineering at Ondokuz Mayıs University, Samsun, Turkey. He received his M.S. and Ph.D. from Erciyes University in 2002 and 2008, respectively. He has worked in the fields of friction, wear, erosion, surface modification, and welding.

Fehmi Nair received his B.S. in Mechanical Engineering from Firat University, Elazig, Türkiye, in 1992, M.S. and Ph.D. from Erciyes University Mechanical Engineering in 1996 and 2005, respectively. He is an Associate Professor at Kayseri Erciyes University, Mechanical Engineering. His research interests include manufacturing technologies, production and characterization of metal matrix composites, and tribology.

Numan Zafar received his M.S. and Ph.D. from Erciyes University in Mechanical Engineering in 2007 and 2022, respectively. He is currently associated with KIM Technologies and working on advanced ceramic matrix composites.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yıldızlı, K., Nair, F. & Zafar, H.M.N. A comparison of the erosive wear performance of particle reinforced aluminum matrix composites. J Mech Sci Technol 38, 1215–1226 (2024). https://doi.org/10.1007/s12206-024-0217-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-024-0217-7

Keywords

Navigation