Skip to main content
Log in

Analytic investigation of stress coupling effects of spherically anisotropic functionally graded piezoelectric hollow spheres

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

We investigate the stress coupling effects of spherically anisotropic piezoelectric hollow spheres with functional gradients (represented by radial power law functions) under external uniform radial traction. By means of submatrix operations, we derive a dimensionless expression that signifies not only the characteristic (amplification/shielding) of the stress coupling, but also the magnitude of the effect. This should be very beneficial for structural design. When bounded strain energy conditions are assumed, the study extends to solid spheres under uniform radial traction on the surface. As in the case of pure elasticity, infinite stresses can occur at the center of the sphere regardless of the magnitude of the applied stress, but all have weaker stress singularities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

u i :

Displacement components

ϕ :

Electrostatic potential

ε ij :

Components of the infinitesimal strain

E i :

Electric field components

σ ij :

Elastic stress components

D i :

Components of the electric displacement

C ijkm :

Elastic stiffnesses

e mij :

Piezoelectric stress constants

ω im :

Dielectric permittivity constants

\({{\bf{\hat \sigma }}}\) :

Generalized stress vector

Ĉ(r):

Generalized elastic stiffnesses matric

\({{\bf{\hat \varepsilon }}}\) :

Generalized strain vector

δ :

Stress singularity

References

  1. I. F. Kirichok, Numerical solution of problems of the electroelastic oscillation of a cylinder and a sphere, Sov. Appl. Mech., 16 (1980) 117–121.

    Article  Google Scholar 

  2. W. Q. Chen, Problems of radially polarized piezoelectric bodies, Int. J. Solids Structures, 36 (28) (1999) 4317–4332.

    Article  Google Scholar 

  3. P. Heyliger and Y. C. Wu, Electroelastic fields in layered piezoelectric spheres, Int. J. Eng. Science, 37 (1999) 143–161.

    Article  Google Scholar 

  4. W. Q. Chen, H. J. Ding and R. Q. Xu, Three-dimensional static analysis of multi-layered piezoelectric hollow spheres via the state space method, Int. J. Solids Structures, 38 (2001) 4921–4936.

    Article  Google Scholar 

  5. H. L. Dai and X. Wang, Transient wave propagation in piezoelectric hollow spheres subjected to thermal shock and electric excitation, Struct. Eng. Mech., 19 (4) (2005) 441–457.

    Article  Google Scholar 

  6. A. Ghorbanpour, S. Golabi and M. Saadatfar, Stress and electric potential fields in piezoelectric smart spheres, J. Mechanical Science and Technology, 20 (11) (2006) 1920–1933.

    Article  Google Scholar 

  7. H. M. Wang and H. J. Ding, Dynamic analysis of a composite hollow sphere composed of elastic and piezoelectric layers, Arch. Appl. Mech., 76 (2006) 249–262.

    Article  Google Scholar 

  8. H. L. Dai, Y. M. Fu and T. X. Liu, Electromagnetoelastic dynamic response of transversely isotropic piezoelectric hollow spheres in a uniform magnetic field, J. Appl. Mech., 74 (2007) 65–73.

    Article  Google Scholar 

  9. H. L. Dai, H. Y. Zheng and L. Yang, Exact electromagnetothermoelastic solution for a transversely isotropic piezoelectric hollow sphere subjected to arbitrary thermal shock, J. Elasticity, 102 (2011) 79–97.

    Article  MathSciNet  Google Scholar 

  10. J. Wang, L. Qin, P. Wei and L. Tang, Modeling and analysis of multilayer piezoelectric-elastic spherical transducers, J. Intelligent Material Systems and Structures, 29 (11) (2018) 2437–2455.

    Article  Google Scholar 

  11. A. Kruusing, Analysis and optimization of loaded cantilever beam microactuators, Smart Mater. Struct., 9 (2) (2000) 186–196.

    Article  Google Scholar 

  12. T. Kawai, S. Miyazaki and M. Araragi, A new method for forming a piezoelectric FGM using a dual dispenser system, Proceedings of the First International Symposium on Functionally Gradient Materials, Sendai, Japan (1990) 191–196.

  13. X. H. Zhu and Z. Y. Meng, Operational principle fabrication and displacement characteristic of a functionally gradient piezoelectric ceramic actuator, Sens. Actuators, 48 (1995) 169–176.

    Article  Google Scholar 

  14. C. C. M. Wu, M. Kahn and W. Moy, Piezoelectric ceramics with functional gradients: a new application in material design, J. Am. Ceram. Soc., 79 (1996) 809–812.

    Article  Google Scholar 

  15. Z. Zhong and E. T. Shang, Three-dimensional exact analysis of a simply supported functionally gradient piezoelectric plate, Int. J. Solids Structures, 40 (2003) 5335–5352.

    Article  Google Scholar 

  16. P. Lu, H. P. Lee and C. Lu, Exact solutions for simply supported functionally graded piezoelectric laminates by Stroh-like formalism, Compos. Struct., 72 (2006) 352–363.

    Article  Google Scholar 

  17. W. Q. Chen, Y. Lu, G. R. Ye and J. B. Cai, 3D electroelastic fields in a functionally graded piezoceramic hollow sphere under mechanical and electric loadings, Arch. Appl. Mech., 72 (2002) 39–51.

    Article  Google Scholar 

  18. H. J. Ding, H. M. Wang and W. Q. Chen, Analytical solution for the electroelastic dynamics of a nonhomogeneous spherically isotropic piezoelectric hollow sphere, Arch. Appl. Mech., 73 (2003) 49–62.

    Article  Google Scholar 

  19. H. L. Dai, Y. M. Fu and J. H. Yang, Electromagnetoelastic behaviors of functionally graded piezoelectric solid cylinder and sphere, Acta Mech. Sin., 23 (2007) 55–63.

    Article  Google Scholar 

  20. A. Y. Grigorenko, W. H. Muller, R. Wille and I. A. Loza, Nonaxisymmetric electroelastic vibrations of a hollow sphere of functionally gradient piezoelectric material, Continuum Mech. Thermodyn., 26 (2014) 771–781.

    Article  MathSciNet  Google Scholar 

  21. T. Ootao and Y. Tanigawa, Three-dimensional transient thermal stress analysis of nonhomogeneous hollow sphere with respect to rotating heat source, Trans. Jpn. Soc. Mech. Eng., 60 (578) (1994) 2273–2279.

    Article  Google Scholar 

  22. M. P. Lutz and R. W. Zimmerman, Thermal stresses and effective thermal expansion coefficient of functionally graded sphere, J. Thermal Stresses, 19 (1) (1996) 39–54.

    Article  MathSciNet  Google Scholar 

  23. H. L. Dai and Y. N. Rao, Investigation on electromagnetothermoelastic interaction of functionally graded piezoelectric hollow spheres, Structural Eng. Mech., 40 (1) (2011) 49–64.

    Article  Google Scholar 

  24. C. B. Liu, Z. G. Bian, W. Q. Chen and C. F. Lu, Three-dimensional pyroelectric analysis of a functionally graded piezoelectric hollow sphere, J. Thermal Stresses, 35 (2012) 499–516.

    Article  Google Scholar 

  25. A. A. Atai and D. Lak, Analytic investigation of effect of electric field on elasto-plastic response of a functionally graded piezoelectric hollow sphere, J. Mechanical Science and Technology, 30 (1) (2016) 113–119.

    Article  Google Scholar 

  26. M. Jabbari, S. M. Mousavi and M. A. Kiani, Functionally graded hollow sphere with piezoelectric internal and external layers under asymmetric transient thermomechanical loads, J. Pressure Vessel Technology, 139 (2017) 051207–1.

    Article  Google Scholar 

  27. R. A. Toupin, Piezoelectric relations and the radial deformation of a polarized spherical shell, J. Acous. Soc. Am., 31 (1959) 315–318.

    Article  MathSciNet  Google Scholar 

  28. M. Y. Chung, Stress amplification/shielding phenomena of spherically anisotropic and radially inhomogeneous linear elastic hollow spheres, Q. J. Mech. Appl. Math., 72 (2019) 535–544.

    Article  MathSciNet  Google Scholar 

  29. T. C. T. Ting, The remarkable nature of radially symmetric deformation of spherically uniform linear anisotropic elastic solids, J. Elasticity, 53 (1999) 47–64.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. T. Lu.

Additional information

Ming-Yan Chung is an Associate Professor of the School of Chemistry and Civil Engineering, Shaoguan University, Guangdong, China. He received his Ph.D. in Engineering Mechanics from University of Illinois at Chicago. His research interests include anisotropic elasticity and piezoelectricity.

Cheng-Tsung Lu is an Associate Professor of the School of Chemistry and Civil Engineering, Shaoguan University, Guangdong, China. He received his Ph.D. from National Taiwan University of Science and Technology. His current research focuses on civil engineering materials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, M.Y., Lu, C.T. Analytic investigation of stress coupling effects of spherically anisotropic functionally graded piezoelectric hollow spheres. J Mech Sci Technol 38, 2375–2383 (2024). https://doi.org/10.1007/s12206-023-0615-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-023-0615-2

Keywords

Navigation