Skip to main content
Log in

Reliability and sensitivity analysis of bridge crane structure

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

In this paper, the structural reliability and sensitivity of bridge crane have analyzed and calculated. A comprehensive evaluation framework of structural reliability and global sensitivity of bridge crane under two dangerous conditions and multiple uncertain factors is proposed. In order to simulate the typical failure modes under two dangerous conditions, the calculation is based on the high fidelity finite element model (FEM) of bridge crane. For calculation methods, the framework includes: high-precision Monte Carlo simulation (MCS) scheme for verification and high-efficiency artificial neural network (ANN)-based scheme for application. The reliability results show that the accuracy of the calculation results based on artificial neural network is acceptable (the relative errors are −0.86 %, −10 %, 5.26 % and 0, respectively), and 85 % of the calculation time is saved. The results show uncertain parameters related to loads, section size and elastic modulus should be paid attention to in bridge crane structural reliability design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Zheng, F. Zhao and Z. Wang, Fault diagnosis system of bridge crane equipment based on fault tree and Bayesian network, Int. J. Adv. Manuf. Technol., 105(9) (2019) 3605–3618.

    Article  Google Scholar 

  2. H. Lei et al., Creep/fatigue accelerated failure of Ni-based superalloy turbine blade: microscopic characteristics and void migration mechanism, Int. J. Fatigue., 154 (2022) 106558.

    Article  Google Scholar 

  3. L. Cheng et al., Moving extremum surrogate modeling strategy for dynamic reliability estimation of turbine blisk with multiphysics fields, Aerosp. Sci. Technol., 106 (2020) 106112.

    Article  Google Scholar 

  4. L. Cheng et al., Probabilistic analyses of structural dynamic response with modified Kriging-based moving extremum framework, Eng. Fail. Anal., 125 (2021) 105398.

    Article  Google Scholar 

  5. C. W. Fei et al., Multilevel nested reliability-based design optimization with hybrid intelligent regression for operating assembly relationship, Aerosp. Sci. Technol., 103 (2020) 105906.

    Article  Google Scholar 

  6. R. G. Yang et al., Load reduction test method of similarity theory and BP neural networks of large cranes, Chin. J. Mech. Eng., 29(1) (2015) 145–151.

    Article  Google Scholar 

  7. W. Li et al., A comprehensive framework for model validation and reliability assessment of container crane structures, Struct. Multidiscip. Optim., 62(5) (2020) 2817–2832.

    Article  Google Scholar 

  8. R. G. Yang et al., Interval non-probabilistic time-dependent reliability analysis of boom crane structures, J. Mech. Sci. Technol., 35(2) (2020) 535–544.

    Google Scholar 

  9. A. Der Kiureghian and T. Dakessian, Multiple design points in first and second-order reliability, Struct. Saf., 20 (1998) 37–49.

    Article  Google Scholar 

  10. M. Philippe, A first order reliability method for series systems, Struct. Saf., 22(1) (2000) 5–16.

    Article  Google Scholar 

  11. M. A. Shayanfar, M. A. Barkhordari and M. A. Roudak, A new effective approach for computation of reliability index in nonlinear problems of reliability analysis, Commun. Nonlinear. Sci. Numer. Simul., 60 (2018) 184–202.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. X. Yang, Chaos control for numerical instability of first order reliability method, Commun. Nonlinear. Sci. Numer. Simul., 15(10) (2010) 3131–3141.

    Article  MATH  Google Scholar 

  13. Y. T. Wang et al., A confidence-based reliability optimization with single loop strategy and second-order reliability method, Comput. Methods. Appl. Mech. Engrg., 372 (2020) 113436.

    Article  MathSciNet  MATH  Google Scholar 

  14. W. Zhao et al., An effective first order reliability method based on Barzilai-Borwein step, Appl. Math. Model., 77(2) (2020) 1545–1563.

    Article  MathSciNet  MATH  Google Scholar 

  15. B. Keshtegar and Z. Meng, A hybrid relaxed first-order reliability method for efficient structural reliability analysis, Struct. Saf., 66 (2017) 84–93.

    Article  Google Scholar 

  16. C. Wang, H. Zhang and Q. W. Li, Moment-based evaluation of structural reliability, Eliab. Eng. Syst. Safe., 181 (2018) 38–45.

    Article  Google Scholar 

  17. S. X. Guo, An efficient third-moment saddlepoint approximation for probabilistic uncertainty analysis and reliability evaluation of structures, Appl. Math. Model., 28(3) (2006) 261–272.

    Google Scholar 

  18. Z. H. Lu, D. Z. Hu and Y. G. Zhao, Second-order fourth-moment method for structural reliability, J. Eng. Mech., 143 (4) (2017).

  19. T. Zhang, An improved high-moment method for reliability analysis, Struct. Multidiscip. Optim., 56 (2017) 1225–1232.

    Article  MathSciNet  Google Scholar 

  20. H. Lu et al., An improved high order moment-based saddlepoint approximation method for reliability analysis, Appl. Math. Model., 82 (2020) 836–847.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Delbariani-Nejad and S. A. Nazari, Effects of loading modes on reliability of cracked structures using FORM and MCS, Int. J. Precis. Eng. Manuf., 18(1) (2017) 63–76.

    Article  Google Scholar 

  22. X. Zhai et al., A stochastic model updating strategy-based improved response surface model and advanced Monte Carlo simulation, Mech. Syst. Signal. Proc., 82 (2017) 323–338.

    Article  Google Scholar 

  23. V. Dubourg, B. Sudret and F. Deheeger, Metamodel-based importance sampling for structural reliability analysis, Probabilist. Eng. Mech., 33 (2013) 47–57.

    Article  Google Scholar 

  24. I. Papaioannou, C. Papadimitriou and D. Straub, Sequential importance sampling for structural reliability analysis, Struct. Saf., 62 (2016) 66–75.

    Article  Google Scholar 

  25. K. M. Zuev et al., Bayesian post-processor and other enhancements of subset simulation for estimating failure probabilities in high dimensions, Comput. Struct., 92–93 (2012) 283–296.

    Article  Google Scholar 

  26. H. S. Li and S. K. Au, Design optimization using subset simulation algorithm, Struct. Saf., 32(6) (2010) 384–392.

    Article  Google Scholar 

  27. X. X. Huang, J. Q. Chen and H. P. Zhu, Assessing small failure probabilities by AK-SS: an active learning method combining Kriging and subset simulation, Struct. Saf., 59 (2016) 86–95.

    Article  Google Scholar 

  28. T. X. Zhang, Y. M. Zhang and X. P. Du, Reliability analysis for k-out-of-n systems with shared load and dependent components, Struct. Multidiscip. Optim., 57(3) (2018) 913–923.

    Article  MathSciNet  Google Scholar 

  29. C. W. Fei et al., Enhanced network learning model with intelligent operator for the motion reliability evaluation of flexible mechanism, Aerosp. Sci. Technol. (2020) 107.

  30. B. Echard, N. Gayton and M. Lemaire, AK-MCS: an active learning reliability method combining Kriging and Monte Carlo simulation, Struct. Saf., 33(2) (2011) 145–154.

    Article  Google Scholar 

  31. C. W. Fei, C. Lu and R. P. Liem, Decomposed-coordinated surrogate modeling strategy for compound function approximation in a turbine-blisk reliability evaluation, Aerosp. Sci. Technol (2019) 95.

  32. C. Lu et al., Probabilistic analyses of structural dynamic response with modified Kriging-based moving extremum framework, Eng. Fail. Anal. (2021) 125.

  33. R. B. Solanki et al., Reliability assessment of passive systems using artificial neural network based response surface methodology, Ann. Nucl. Energy, 144 (2020) 107487.

    Article  Google Scholar 

  34. M. Rashki et al., Classification correction of polynomial response surface methods for accurate reliability estimation, Struct. Saf. (2019) 81.

  35. L. K. Song et al., Dynamic neural network method-based improved PSO and BR algorithms for transient probabilistic analysis of flexible mechanism, Adv. Eng. Inform., 33 (2017) 144–153.

    Article  Google Scholar 

  36. D. Lehký and M. Šomodíková, Reliability calculation of time-consuming problems using a small-sample artificial neural network-based response surface method, Neural. Comput. and Applic., 28 (2017) 1249–1263.

    Article  Google Scholar 

  37. Y. Zhou et al., Surrogate modeling of high-dimensional problems via data-driven polynomial chaos expansions and sparse partial least square, Comput. Method. Appl. M. (2020) 364.

  38. L. X. Zheng et al., An active learning method combining deep neural network and weighted sampling for structural reliability analysis, Mech Syst Signal Pr, 140 (2020) 106684.

    Article  Google Scholar 

  39. M. R. Rajashekhar and B. R. Ellingwood, A new look at the response surface approach for reliability analysis, Struct. Saf., 12(3) (1993) 205–220.

    Article  Google Scholar 

  40. C. Y. Zhang et al., Advanced multiple response surface method of sensitivity analysis for turbine blisk reliability with multi-physics coupling, Appl. Math. Mech., 29(4) (2007) 962–971.

    Google Scholar 

  41. S. N. Xiao and Z. Z. Lu, Structural reliability sensitivity analysis based on classification of model output, Aerosp. Sci. Technol., 71 (2017) 52–61.

    Article  Google Scholar 

  42. I. M. Sobol, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Math. Comput. Simulat., 55 (2001) 221–280.

    MathSciNet  MATH  Google Scholar 

  43. L. Y. Li et al., Moment-independent importance measure of basic variable and its state dependent parameter solution, Struct. Saf., 38 (2012) 40–47.

    Article  Google Scholar 

  44. GBT3811-2008 Design Rules for Cranes, China Standards Press, Beijing (2008) (in Chinese).

  45. R. M. Nejad et al., Failure analysis of a working roll under the influence of the stress field due to hot rolling process, J. Fail Fail Anal Prev. (2021) 1–10.

  46. K. Alilakbari, M. Imanparast and R. Masoudi Nejad, Microstructure and fatigue fracture mechanism for a heavy-duty truck diesel engine crankshaft, Sci. Iran, 26(6) (2019) 3313–3324.

    Google Scholar 

  47. K. Aliakbari et al., Analysis of stress intensity factors in railway wheel under the influence of stress field due to heat treatment and press-fitting process, Eng. Fail Anal., 130 (2021) 105736.

    Article  Google Scholar 

  48. E. Borgonovo, A new uncertainty importance measure, Eliab. Eng. Syst. Safe., 92 (2007) 771–784.

    Article  Google Scholar 

  49. A. Saltelli, S. Tarantola and F. Campolongo, Sensitivity analysis as an ingredient of modeling, Stat. Sci., 19(4) (2000) 377–395.

    MathSciNet  Google Scholar 

  50. L. J. Cui, Z. Z. Lu and X. P. Zhao, Moment-independent importance measure of basic random variable and its probability density evolution solution, Sci. China. Tech. Sci., 53(4) (2010) 1138–1145.

    Article  MATH  Google Scholar 

  51. C. C. Zhou et al., Reliability and global sensitivity analysis for an airplane slat mechanism considering wear degradation, Chinese. J. Aeronaut., 34(1) (2021) 163–170.

    Article  Google Scholar 

  52. H. G. Zhang, Z. S. Wang and D. R. Liu, A comprehensive review of stability analysis of continuous-time recurrent neural networks, IEEE. Trans. Neural. Netw. Learn. Syst., 7(25) (2014) 1229–1262.

    Article  Google Scholar 

  53. L. Liu, Z. S. Wang and H. G. Zhang, Adaptive fault-tolerant tracking control for MIMO discrete-time systems via reinforcement learning algorithm with less learning parameters, IEEE. Trans. Autom. Sci. Eng., 14(1) (2017) 299–313.

    Article  Google Scholar 

  54. A. A. Chojaczyk et al., Review and application of artificial neural networks models in reliability analysis of steel structures, Struct. Saf., 52(Part A) (2015) 78–89.

    Article  Google Scholar 

  55. A. H. Elhewy, E. Mesbahi and Y. Pu, Reliability analysis of structure using neural network method, Probab. Eng. Mech., 21(1) (2006) 44–53.

    Article  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the Fund for National Natural Science Foundation of China (51805348), sponsored by the Fund for Shanxi “1331 Project” Key Subjects Construction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruigang Yang.

Additional information

Yang Ruigang received the B.S. degree in Mechanical Engineering from Taiyuan University of Technology in 1998 and the Ph.D. degree in Mechanical Engineering from Taiyuan University of Technology in 2009. He is a Professor of Taiyuan University of Science and Technology of China. He has published more than 50 journal articles and conference papers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Yang, R., Qi, Q. et al. Reliability and sensitivity analysis of bridge crane structure. J Mech Sci Technol 36, 4419–4431 (2022). https://doi.org/10.1007/s12206-022-0807-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-022-0807-1

Keywords

Navigation