Skip to main content
Log in

Bifurcation analysis of combustion instability in a Rijke burner with an improved third-order saturated flame model

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

The bifurcation analysis of nonlinear combustion instability in a Rijke burner is studied numerically. First, a saturated flame model and a third-order saturated flame model are proposed, and the mode truncation effects are investigated by studying their influences on system eigenvalues. Then, bifurcation analysis on the flame location, average flame intensity, damping, and time delay in the flame model is conducted with the new flame models. Results show that the burner driven by the saturated model loses stability via supercritical Hopf bifurcations, whereas the system driven by the third-order saturated model shows the characteristic of subcritical Hopf bifurcations, accompanied by bistable regimes emerging in the bifurcation diagrams. Finally, the effects of velocity perturbations are analyzed further, and the results show that a given system may oscillates with different frequencies if the disturbance is imposed to different Galerkin modes. This study reveals that the process of the combustion system’s transition to instability depends strongly on the nonlinear term in the flame model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. P. Juniper and R. I. Sujith, Sensitivity and nonlinearity of thermoacoustic oscillations, Annu. Rev. Fluid Mech., 50(1) (2018) 661–689.

    Article  MathSciNet  MATH  Google Scholar 

  2. X. Li, Y. Wang, N. Wang and D. Zhao, Stochastic properties of thermoacoustic oscillations in an annular gas turbine combustion chamber driven by colored noise, J. Sound Vib., 480 (2020) 1115423.

    Google Scholar 

  3. K. Balasubramanian and R. I. Sujith, Thermoacoustic instability in a Rijke tube: non-normality and nonlinearity, Phys. Fluids., 20 (2008) 044103.

    Article  MATH  Google Scholar 

  4. S. Mariappan and R. I. Sujith, Non-normality and internal flame dynamics in premixed flame-acoustic interaction, J. Fluid Mech., 679 (2011) 315–342.

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Gotoda et al., Dynamic properties of combustion instability in a lean premixed gas-turbine combustor, Chaos, 21 (2011) 013124.

    Article  Google Scholar 

  6. L. Kabiraj, R. I. Sujith and P. Wahi, Bifurcations self-excited ducted laminar premixed flames, J. Eng. Gas Turbines Power, 134(3) (2012) 031502.

    Article  Google Scholar 

  7. S. Ducruix et al., Combustion dynamics and instabilities: elementary coupling and driving mechanisms, J. Propul. Power, 19(5) (2003) 722–734.

    Article  Google Scholar 

  8. K. Kashinath, I. C. Waugh and M. P. Juniper, Nonlinear self-excited thermoacoustic oscillations of a ducted premixed flame: bifurcations and routes to chaos, J. Fluid Mech., 7619 (2014) 399–430.

    Article  MathSciNet  Google Scholar 

  9. S. L. Rani, Reduced-order model for combustion instability in a two-dimensional duct with a flameholder, J. Propul. Power, 25(1) (2009) 237–248.

    Article  Google Scholar 

  10. S. Schilimpert, M. Meinke and W. Schröder, Nonlinear analysis of an acoustically excited laminar premixed flame, Combust. Flame, 163 (2016) 28–43.

    Google Scholar 

  11. X. Han, J. Li and A. S. Morgans, Prediction of combustion instability limit cycle oscillations by combining flame describing function simulations with a thermoacoustic network model, Combust. Flame, 162(10) (2015) 3632–3647.

    Article  Google Scholar 

  12. Y. Huang and V. Yang, Dynamics and stability of leanpremixed swirl-stabilized combustion, Prog. Energy Combust. Sci., 35(4) (2009) 293–364.

    Article  Google Scholar 

  13. J. Li et al., Numerical prediction of combustion instability limit cycle oscillations for a combustor with a long flame, Combust. Flame, 185 (2017) 28–43.

    Article  Google Scholar 

  14. N. Ananthkrishnan, S. Deo and F. E. C. Culick, Reduced-order modeling and dynamics of nonlinear acoustic waves in a combustion chamber, Combust. Sci. Technol., 177(2) (2005) 221–247.

    Article  Google Scholar 

  15. S. Cao et al., Analysis of mass transport in a turbulent flame using Lagrangian coherent structures, Journal of Vibration Testing and System Dynamics, 4(1) (2020) 79–93.

    Article  Google Scholar 

  16. T. C. Lieuwen, Unsteady Combustor Physics, Cambridge University Press, Cambridge (2012).

    Book  MATH  Google Scholar 

  17. M. P. Juniper, Triggering in thermoacoustics, Int. J. Spray Combust. Dyn., 4 (2012) 217–237.

    Article  Google Scholar 

  18. S. Oh, J. Kim and Y. Kim, FDF-based combustion instability analysis for evolution of mode shapes and eigenfrequency in the multiple flame burner, Appl. Therm. Eng., 124 (2017) 695–706.

    Article  Google Scholar 

  19. Y. J. Kim, Y. Yoon and M. C. Lee, On the observation of highorder, multi-mode, thermoacoustic combustion instability in a model gas turbine combustor firing hydrogen containing syngases, Int. J. Hydrogen Energy, 44(21) (2019) 11111–11120.

    Article  Google Scholar 

  20. M. C. Lee et al., Investigation into the cause of high multimode combustion instability of H2/CO/CH4 syngases in a partially premixed gas turbine model combustor, Proc. Combust. Inst., 35(3) (2015) 3263–3271.

    Article  Google Scholar 

  21. J. Yoon et al., Effects of convection time on the high harmonic combustion instability in a partially premixed combustor, Proc. Combust. Inst., 36(3) (2017) 3753–3761.

    Article  Google Scholar 

  22. J. P. Moeck et al., Subcritical thermoacoustic instabilities in a premixed combustor, 14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference), Vancouver (2008).

  23. K. I. Matveev and F. E. C. Culick, A model for combustion instability involving vortex shedding, Combust. Sci. Technol., 175(6) (2003) 1059–1083.

    Article  Google Scholar 

  24. L. Crocco, Aspects of combustion stability in liquid propellant rocket motors, part I: fundamentals, low frequency instability with monopropellants, Journal of the American Rocket Society, 21(6) (1951) 163–178.

    Article  Google Scholar 

  25. N. Noiray et al., A unified framework for nonlinear combustion instability analysis based on the flame describing function, J. Fluid Mech., 615 (2008) 139–167.

    Article  MATH  Google Scholar 

  26. Y. Xi et al., Experimental study of transition to instability in a Rijke tube with axially distributed heat source, Int. J. Heat Mass Transfer, 183(B) (2022) 122157.

    Article  Google Scholar 

  27. L. Kabiraj and R. I. Sujith, Investigation of subcritical instability in ducted premixed flames, Proceedings of the ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. Volume 2: Combustion, Fuels and Emissions, Parts A and B., Vancouver (2011) 969–977.

  28. M. A. Heckl, Non-linear acoustic effects in the Rijke tube, Acoustica, 72 (1990) 63–71.

    Google Scholar 

  29. A. Orchini, G. Rigas and M. P. Juniper, Weakly nonlinear analysis of thermoacoustic bifurcations in the Rijke tube, J. Fluid Mech., 805 (2016) 523–550.

    Article  MathSciNet  MATH  Google Scholar 

  30. P. Subramanian, S. Mariappan, R. I. Sujith and P. Wahi, Bifurcation analysis of thermoacoustic instability in a horizontal Rijke tube, Int. J. Spray Combust. Dyn., 2(4) (2010) 325–355.

    Article  Google Scholar 

  31. X. Yang, A. Turan and S. Lei, Bifurcation and nonlinear analysis of a time-delayed thermoacoustic system, Commu. Nonlin. Sci. Num. Sim., 44 (2017) 229–244.

    Article  MathSciNet  MATH  Google Scholar 

  32. M. A. Heckl, Analytical model of nonlinear thermo-acoustic effects in a matrix burner, J. Sound Vib., 332(17) (2013) 4021–4036.

    Article  Google Scholar 

  33. A. Bigongiari and M. A. Heckl, A green’s function approach to the rapid prediction of thermoacoustic instabilities in combustors, J. Fluid Mech., 798 (2016) 970–996.

    Article  MathSciNet  MATH  Google Scholar 

  34. C. M. Shelton and J. Majdalani, Different perspectives on predicting the thermoacoustic energy conversion response in a rijke tube, Phys. Fluids., 33(11) (2021) 114110.

    Article  Google Scholar 

  35. X. Li, D. Zhao and X. Yang, Experimental and theoretical bifurcation study of a nonlinear standing-wave thermoacoustic system, Energy, 135(15) (2017) 553–562.

    Article  Google Scholar 

  36. R. Balachandran et al., Experimental investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations, Combust. Flame., 143(1–2) (2005) 37–55.

    Article  Google Scholar 

  37. X. Li, D. Zhao and B. Shi, Coherence resonance and stochastic bifurcation behaviors of simplified standing-wave thermoacoustic systems, J. Acoust. Soc. Am., 145(2) (2019) 692–702.

    Article  Google Scholar 

  38. M. S. Howe, Acoustics of Fluid-Structure Interactions, Cambridge University Press, Cambridge (1998) 469–472.

    Book  MATH  Google Scholar 

  39. K. I. Matveev, Thermoacoustic instabilities in the Rijke tube: experiments and modeling, Ph.D. Dissertation, California Institute of Technology, USA (2013).

    Google Scholar 

  40. A. P. Dowling, A kinematic model of a ducted flame, J. Fluid Mech., 394 (1999) 51–72.

    Article  MATH  Google Scholar 

  41. A. P. Dowling, Nonlinear self-excited oscillation of a ducted flame, J. Fluid Mech., 346 (1997) 271–290.

    Article  MathSciNet  MATH  Google Scholar 

  42. V. Gupta et al., Numerical results on noised-induced dynamics in the subthreshold regime for thermoacoustic systems, J. Sound Vib., 390 (2017) 55–66.

    Article  Google Scholar 

  43. B. D. Bellows et al., Flame transfer function saturation mechanisms in a swirl-stabilized combustor, Proc. Combust. Inst., 31(2) (2017) 3181–3188.

    Article  Google Scholar 

  44. Z. Wang, P. Liu and W. Ao, A reduced-order model of thermoacoustic instability in solid rocket motors, Aerosp. Sci. Technol., 97 (2020) 105615.

    Article  Google Scholar 

  45. M. L. Frankel et al., Finite-dimensional dynamical system modeling thermal instabilities, Phys. D: Nonlinear Phenom., 137(3–4) (2000) 295–315.

    Article  MathSciNet  MATH  Google Scholar 

  46. J. Sieber et al., DDE-BIFTOOL manual — bifurcation analysis of delay differential equations, arXiv:1406.7144 (2014).

  47. K. Engelborghs et al., Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL, ACM Transactions on Mathematical Software, 28 (2002) 1–2.

    Article  MathSciNet  MATH  Google Scholar 

  48. X. Li et al., Stability study of a nonlinear thermoacoustic combustor: effects of time delay, acoustic loss and combustion-flow interaction index, Appl. Energy, 199 (2017) 217–224.

    Article  Google Scholar 

  49. H. G. Yoon, J. Peddiesion and K. R. Purdy, Mathematical modeling of a generalized Rijke tube, Int. J. Eng. Sci., 36 (1998) 1235–1264.

    Article  Google Scholar 

  50. H. G. Yoon, J. Peddiesion and K. R. Purdy, Non-linear response of a generalized Rijke tube, Int. J. Eng. Sci., 39 (2001) 1707–1723.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No.51775437), the Key Research and Development Program of Shaanxi Province (No.2017ZDCXL-GY-02-02), the Key Laboratory of Compressor of China (No.SKL-YSJ201802) and the World-Class Universities (Disciplines) and the Characteristic Development Guidance Funds for the Central Universities (No.PY3A056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiazhong Zhang.

Additional information

Jiazhong Zhang is a Professor at Xi’an Jiaotong University. He received his Ph.D. degree from Xi’an Jiaotong University. His research interests include the nonlinear dynamics, numerical analysis on fluid-structure coupling and aeroelastic stability, and the nonlinear behavior such as singularities and chaos in turbulence.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, N., Wang, W., Zhang, J. et al. Bifurcation analysis of combustion instability in a Rijke burner with an improved third-order saturated flame model. J Mech Sci Technol 36, 4289–4301 (2022). https://doi.org/10.1007/s12206-022-0746-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-022-0746-x

Keywords

Navigation