Skip to main content
Log in

Biomechanical investigation of anterior cruciate ligament injury risk in pivoting leg during taekwondo kicks using motion analysis system

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

The anterior cruciate ligament (ACL) is part of the knee joint injured during taekwondo kicking. However, few studies have investigated the ACL injury mechanism and its inherent risk factors. In this study, we compared the knee joint kinematics in the pivoting leg during eight typical taekwondo kicks (back, roundhouse, turning-back, hook, side, push, axe, and front kicks) to investigate the possible risk of ACL injury. Standard inverse dynamics analyses were used to calculate axial tibial rotation and knee joint varus-valgus moment using a musculoskeletal model of the lower extremity and a motion analysis system with six high-speed digital cameras and a force plate. The maximum values of internal tibial rotation and valgus moment in the pivot leg were investigated. In addition, the time interval when the internal rotation and/or valgus moment exceeded the upper limit of the safe region during the kicking was analyzed. The results revealed that most kicks had time intervals of excessive amounts of internal tibial rotation and/or knee valgus moment, which are related to the risk of ACL injury. Moreover, one particular kicking motion, the hook kick, has a relatively high ACL injury risk in the pivot leg compared to other kicking motions. We suggest that athletes and coaches be aware of these risky kicks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. P. Lystad, H. Pollard and P. L. Graham, Epidemiology of injuries in competition taekwondo: a meta-analysis of observational studies, Journal of Science and Medicine in Sport, 12(6) (2009) 614–621.

    Article  Google Scholar 

  2. A. Altarriba-Bartes, F. Drobnic, L. Til, N. Malliaropoulos, J. B. Montoro and A. Irurtia, Epidemiology of injuries in elite taekwondo athletes: two Olympic periods cross-sectional retrospective study, BMJ Open, 4(2) (2014) e004605.

    Article  Google Scholar 

  3. M. Kazemi and W. Pieter, Injuries at the Canadian National Tae Kwon Do Championships: a prospective study, BMC Musculoskeletal Disorders, 5 (2004) 22.

    Article  Google Scholar 

  4. K. C. Huang, W. H. Hsu and T. C. Wang, Acute injury of anterior cruciate ligament during karate training, The Knee, 14(3) (2007) 245–248.

    Article  Google Scholar 

  5. M. Järvinen, A. Natri, S. Laurila and P. Kannus, Mechanisms of anterior cruciate ligament ruptures in skiing, Knee Surgery, Sports Traumatology, Arthroscopy, 2(4) (1994) 224–228.

    Article  Google Scholar 

  6. J. D. Chappell, R. A. Creighton, C. Giuliani, B. Yu and W. E. Garrett, Kinematics and electromyography of landing preparation in vertical stop-jump: risks for noncontact anterior cruciate ligament injury, The American Journal of Sports Medicine, 35(2) (2007) 235–241.

    Article  Google Scholar 

  7. J. D. Chappell, B. Yu, D. T. Kirkendall and W. E. Garrett, A comparison of knee kinetics between male and female recreational athletes in stop-jump tasks, The American Journal of Sports Medicine, 30(2) (2002) 261–267.

    Article  Google Scholar 

  8. T. E. Hewett, G. D. Myer, K. R. Ford, R. S. Heidt, A. J. Colosimo, S. G. McLean, A. J. van den Bogert, M. V. Paterno and P. Succop, Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study, The American Journal of Sports Medicine, 33(4) (2005) 492–501.

    Article  Google Scholar 

  9. E. Kristianslund and T. Krosshaug, Comparison of drop jumps and sport-specific sidestep cutting: implications for anterior cruciate ligament injury risk screening, The American Journal of Sports Medicine, 41(3) (2013) 684–688.

    Article  Google Scholar 

  10. R. A. Malinzak, S. M. Colby, D. T. Kirkendall, B. Yu and W. E. Garrett, A comparison of knee joint motion patterns between men and women in selected athletic tasks, Clinical Biomechanics, 16(5) (2001) 438–445.

    Article  Google Scholar 

  11. W. Pieter, G. P. Fife and D. M. O’Sullivan, Competition injuries in taekwondo: a literature review and suggestions for prevention and surveillance, British Journal of Sports Medicine, 46(7) (2012) 485–491.

    Article  Google Scholar 

  12. K. W. Nha, A. Dorj, J. Feng, J. H. Shin, J. I. Kim, J. H. Kwon, K. Kim and Y. H. Kim, Application of computational lower extremity model to investigate different muscle activities and joint force patterns in knee osteoarthritis patients during walking, Computational and Mathematical Methods in Medicine (2013) 314280.

  13. T. Purevsuren, A. Dorj, K. Kim and Y. H. Kim, Prediction of medial and lateral contact force of the knee joint during normal and turning gait after total knee replacement, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 230(4) (2016) 288–297.

    Article  Google Scholar 

  14. H. J. Kim, J. W. Fernandez, M. Akbarshahi, J. P. Walter, B. J. Fregly and M. G. Pandy, Evaluation of predicted knee-joint muscle forces during gait using an instrumented knee implant, Journal of Orthopaedic Research, 27(10) (2009) 1326–1331.

    Article  Google Scholar 

  15. A. L. Bell, R. A. Brand and D. R. Pedersen, Prediction of hip joint centre location from external landmarks, Human Movement Science, 8(1) (1989) 3–16.

    Article  Google Scholar 

  16. G. Wu, S. Siegler, P. Allard, C. Kirtley, A. Leardini, D. Rosenbaum, M. Whittle, D. D. D’Lima, L. Cristofolini, H. Witte, O. Schmid and I. Stokes, Standardization and terminology committee of the international society of biomechanics, ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion - part I: ankle, hip, and spine, Journal of Biomechanics, 35(4) (2002) 543–548.

    Article  Google Scholar 

  17. P. de Leva, Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters, Journal of Biomechanics, 29(9) (1996) 1223–1230.

    Article  Google Scholar 

  18. P. O. Almquist, C. Ekdahl, P. E. Isberg and T. Fridén, Knee rotation in healthy individuals related to age and gender, Journal of Orthopaedic Research, 31(1) (2013) 23–28.

    Article  Google Scholar 

  19. J. W. Levine, A. M. Kiapour, C. E. Quatman, S. C. Wordeman, V. K. Goel, T. E. Hewett and C. K. Demetropoulos, Clinically relevant injury patterns after an anterior cruciate ligament injury provide insight into injury mechanisms, The American Journal of Sports Medicine, 41(2) (2013) 385–395.

    Article  Google Scholar 

  20. M. Alam, A. M. Bull, R. D. Thomas and A. A. Amis, Measurement of rotational laxity of the knee: in vitro comparison of accuracy between the tibia, overlying skin, and foot, The American Journal of Sports Medicine, 39(12) (2011) 2575–2581.

    Article  Google Scholar 

  21. C. Mouton, R. Seil, H. Agostinis, S. Maas and D. Theisen, Influence of individual characteristics on static rotational knee laxity using the rotameter, Knee Surgery, Sports Traumatology, Arthroscopy, 20(4) (2012) 645–651.

    Article  Google Scholar 

  22. C. Mouton, D. Theisen, D. Pape, C. Nührenbörger and R. Seil, Static rotational knee laxity in anterior cruciate ligament injuries, Knee Surgery, Sports Traumatology, Arthroscopy, 20(4) (2012) 652–662.

    Article  Google Scholar 

  23. P. K. Levangie and C. C. Norkin, Theknee, M. Lewek, Joint Structure and Function: A Comprehensive Analysis, F. A. Davis Company, Philadelphia, USA (2005).

    Google Scholar 

  24. Y. K. Oh, D. B. Lipps, J. A. Ashton-Miller and E. M. Wojtys, What strains the anterior cruciate ligament during a pivot landing, The American Journal of Sports Medicine, 40(3) (2012) 574–583.

    Article  Google Scholar 

  25. C. S. Shin, A. M. Chaudhari and T. P. Andriacchi, Valgus plus internal rotation moments increase anterior cruciate ligament strain more than either alone, Medicine & Science in Sports & Exercise, 43(8) (2011) 1484–1491.

    Article  Google Scholar 

  26. J. A. Arnold, T. P. Coker, L. M. Heaton, J. P. Park and W. D. Harris, Natural history of anterior cruciate tears, The American Journal of Sports Medicine, 7(6) (1979) 305–313.

    Article  Google Scholar 

  27. K. L. Markolf, J. F. Gorek, M. Kabo and M. S. Shapiro, Direct measurement of resultant forces in the anterior cruciate ligament, An in vitro study performed with a new experimental technique, The Journal of Bone and Joint Surgery American Volume, 72(4) (1990) 557–567.

    Article  Google Scholar 

  28. K. L. Markolf, D. M. Burchfield, M. M. Shapiro, M. F. Shepard, G. A. Finerman and J. L. Slauterbeck, Combined knee loading states that generate high anterior cruciate ligament forces, Journal of Orthopaedic Research, 13(6) (1995) 930–935.

    Article  Google Scholar 

  29. T. Miyasaka, H. Matsumoto, Y. Suda, T. Otani and Y. Toyama, Coordination of the anterior and posterior cruciate ligaments in constraining the varus-valgus and internal-external rotatory instability of the knee, Journal of Orthopaedic Science, 7(3) (2002) 348–353.

    Article  Google Scholar 

  30. B. C. Fleming, P. A. Renstrom, B. D. Beynnon, B. Engstrom, G. D. Peura, G. J. Badger and R. J. Johnson, The effect of weightbearing and external loading on anterior cruciate ligament strain, Journal of Biomechanics, 34(2) (2001) 163–170.

    Article  Google Scholar 

  31. C. E. Quatman, C. C. Quatman-Yates and T. E. Hewett, A ‘plane’ explanation of anterior cruciate ligament injury mechanisms: a systematic review, Sports Medicine, 40(9) (2010) 729–746.

    Article  Google Scholar 

  32. T. J. Withrow, L. J. Huston, E. M. Wojtys and J. A. Ashton-Miller, The effect of an impulsive knee valgus moment on in vitro relative ACL strain during a simulated jump landing, Clinical Biomechanics, 21(9) (2006) 977–983.

    Article  Google Scholar 

  33. H. Koga, A. Nakamae, Y. Shima, J. Iwasa, G. Myklebust, L. Engebretsen, R. Bahr and T. Krosshaug, Mechanisms for non-contact anterior cruciate ligament injuries: knee joint kinematics in 10 injury situations from female team handball and basketball, The American Journal of Sports Medicine, 38(11) (2010) 2218–2225.

    Article  Google Scholar 

  34. T. Krosshaug, A. Nakamae, B. P. Boden, L. Engebretsen, G. Smith, J. R. Slauterbeck, T. E. Hewett and R. Bahr, Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases, The American Journal of Sports Medicine, 35(3) (2007) 359–367.

    Article  Google Scholar 

  35. O. E. Olsen, G. Myklebust, L. Engebretsen and R. Bahr, Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis, The American Journal of Sports Medicine, 32(4) (2004) 1002–1012.

    Article  Google Scholar 

  36. D. T. Burke, S. A. Adawi, D. P. Burke, P. Bonato and C. M. Leong, The kicking process in taekwondo: a biomechanical analysis, International Physical Medicine & Rehabilitation Journal, 1(1) (2017) 8–13.

    Article  Google Scholar 

  37. R. Al-Saeed and T. G. Matthew, Descriptive analysis of hip and knee joint loading during reverse roundhouse kick (hook) karate kick performed in training and competition modes, 35th Conference of the International Society of Biomechanics in Sports, Cologne, Germany (2017).

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (NRF-2017R1A2B1010492). The authors also thank Ariunzaya Dorj for assistance with data collection and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon Hyuk Kim.

Additional information

Yoon Hyuk Kim received his B.S., M.S. and Ph.D. in mechanical engineering from Korea Advanced Institute of Science and Technology (KAIST) in 1992, 1994, and 2000, respectively. He is a Professor in the Department of Mechanical Engineering, and Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, Yongin, Korea. His research interests include biomechanical and biomedical engineering.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K., Davaasambuu, B., Wei, R. et al. Biomechanical investigation of anterior cruciate ligament injury risk in pivoting leg during taekwondo kicks using motion analysis system. J Mech Sci Technol 36, 1051–1056 (2022). https://doi.org/10.1007/s12206-022-0150-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-022-0150-6

Keywords

Navigation