Skip to main content
Log in

Evaluation of machinability in milling by controlling chip thickness using NC simulation

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

In this study, the machinability of the machining method for controlling chip thickness during the cutting operation was evaluated using simulation based on NC data. A comparative three-dimensional cutting test with a ball end mill was performed using both original and modified NC data. The modified NC data was created for the purpose of controlling the chip thickness generated when cutting with a constant rotation value and changing the feed rate of the original NC data. The results indicated that the actual chip thickness exceeded that of the calculated value although the thickness fluctuation was suppressed. The results revealed that the maximum cutting force and the fluctuation range of cutting force were low, and tool wear after cutting was suppressed using the modified NC data. The application of the method to the cutting of complicated shapes with high removing volume led to reductions in the cutting time by 31 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Schulz and T. Moriwaki, High-speed machining, Annals CIRP, 41 (1992) 637–643.

    Article  Google Scholar 

  2. D. Begic-Hajdarevic, A. Cekic and M. Kulenovic, Experimental study on the high speed machining of hardened steel, Procedia Eng., 69 (2014) 291–295.

    Article  Google Scholar 

  3. S. Zhang, J. F. Li, J. Sun and F. Jiang, Tool wear and cutting forces variation in high-speed end-milling Ti-6Al-4V alloy, Int. J. Adv. Manuf. Technol., 46 (2010) 69–78.

    Article  Google Scholar 

  4. H. Onozuka, S. Kazama, H. Ootsuki, Y. Koizumi, K. Ueno, Y. Maeda and T. Obikawa, High speed and high accuracy machining of long flexible parts with combined face milling cutters, J. Jpn. Soc. Precis. Eng., 76 (2010) 769–774.

    Article  Google Scholar 

  5. H. Iwabe and K. Enta, Tool life of small diameter ball end mill for high speed milling of hardened steel–effects of the machining method and the tool materials-, Int. J. Autom. Technol., 2 (2008) 425–430.

    Article  Google Scholar 

  6. H. Iwabe, Fundamental problems of machining accuracy by end mill and high-speed and high-accurate machining method, Trans. Jpn. Soc. Mech. Eng., Ser. (C), 66 (2000) 1417–1422.

    Article  Google Scholar 

  7. M. Mori, H. Ota and M. Fujishima, Development of highspeed, high-precision 5-axis integrated machine tools, Int. J. Autom. Technol., 1 (2007) 103–107.

    Google Scholar 

  8. M. Fujio, Development of a high-speed and high-accuracy machining system based on servo-data control–evaluation of prototype system-, Int. J. Autom. Technol., 5 (2011) 855–861.

    Article  Google Scholar 

  9. S. V. Telrandhe, A. K. Saxena and S. Mishra, Effect of microstructure and cutting speed on machining behavior of Ti6Al4V alloy, J. Mech. Sci. Technol., 31 (2017) 2177–2184.

    Article  Google Scholar 

  10. C. Yu, X. Huang and C. Fang, Optimizing dynamic characteristics of NC rotary table based on electromechanicalhydraulic coupling, J. Mech. Sci. Technol., 27 (2013) 1081–1088.

    Article  Google Scholar 

  11. P. Klimant, M. Witt and M. Kuhl, CAD kernel based simulation of milling processes, Procedia CIRP, 17 (2014) 710–715.

    Article  Google Scholar 

  12. W. P. Wang, Solid modeling for optimizing metal removal of three-dimensional NC end milling, J. Manuf. Syst., 7 (1988) 57–65.

    Article  Google Scholar 

  13. C. L. Tsai and Y. S. Liao, Prediction of cutting forces in ball-end milling by means of geometric analysis, J. Mater. Process. Technol., 205 (2008) 24–33.

    Article  Google Scholar 

  14. H. A. Sonawane and S. S. Joshi, Analytical modeling of chip geometry and cutting forces in helical ball end milling of superalloy Inconel 718, CIRP J. Manuf. Sci. Technol., 3 (2010) 204–217.

    Article  Google Scholar 

  15. Z. Fu, W. Yang, X. Wang and J. Leopold, Analytical modelling of milling forces for helical end milling based on a predictive machining theory, Procedia CIRP, 31 (2015) 258–263.

    Article  Google Scholar 

  16. Y. C. Kao, N. T. Nguyen, M. S. Chen and S. C. Huang, A combination method of the theory and experiment in determination of cutting force coefficients in ball-end mill processes, J. Comput. Des. Eng., 2 (2015) 233–247.

    Google Scholar 

  17. M. Nikawa, H. Mori, Y. Kitagawa and M. Okada, FEM simulation for orthogonal cutting of titanium-alloy considering ductile fracture to Johnson-Cook model, Mech. Eng. J., 3 (2016) 1–10, Doi: 10.1299/mej.15-00536.

    Article  Google Scholar 

  18. Y. Fu, Y. Zhang, H. Zhou, D. Li, H. Liu, H. Qjao and X. Wang, Timely online chatter detection in end milling process, Mech. Syst. Signal Process., 75 (2016) 668–688.

    Article  Google Scholar 

  19. Y. Yang, W. H. Zhang, Y. C. Ma and M. Wan, Chatter prediction for the peripheral milling of thin-walled workpieces with curved surfaces, Int. J. Mach. Tools Manuf., 109 (2016) 36–48.

    Article  Google Scholar 

  20. S. Jeyakumar, K. Marimuthu and T. Ramachandran, Prediction of cutting force, tool wear and surface roughness of Al6061/SiC composite for end milling operations using RSM, J. Mech. Sci. Technol., 27 (2013) 2813–2822.

    Article  Google Scholar 

  21. J. Monnin, F. Kuster and K. Wegener, Optimal control for chatter mitigation in milling —Part 2: Experimental validation, Control Eng. Pract., 24 (2014) 167–175.

    Article  Google Scholar 

  22. B. Denkena, A. Schmidt, J. Henjes, D. Niederwestberg and C. Niebuhr, Modeling a thermomechanical NC-simulation, Procedia CIRP, 8 (2013) 69–74.

    Article  Google Scholar 

  23. S. Xú, N. Anwer, C. Mehdi-Souzani, R. Harik and L. Qiao, STEP-NC based reverse engineering of in-process model of NC simulation, Int. J. Adv. Manuf. Technol., 86 (2016) 3267–3288.

    Article  Google Scholar 

  24. A. Kolahdooz, H. Towsyfyan, S. A. A. Salehi, M. Ghayyem and F. Mosaedi, A novel optimization approach applied to multi-pass turning process, J. Mod. Process. Manuf. Prod., 6 (2017) 5–19.

    Google Scholar 

  25. M. Azimi, A. Kolahdooz and S. A. Eftekhari, An optimization on the DIN1.2080 alloy in the electrical discharge machining process using ANN and GA, J. Mod. Process. Manuf. Prod., 6 (2017) 33–47.

    Google Scholar 

  26. Y. M. Lee, S. H. Yang and S. I. Chang, Assessment of chip-breaking characteristics using new chip-breaking index, J. Mater. Process. Technol., 173 (2006) 166–171.

    Article  Google Scholar 

  27. C. Nath and T. Kurfess, Obstruction-type chip breakers for controllable chips and improved cooling/lubrication during drilling–a feasibility study, Procedia Manuf., 5 (2016) 375–385.

    Article  Google Scholar 

  28. K. Nakayama, Effect of tension applied to chip during metal-cutting, Bull. Jpn. Soc. Precis. Eng., 30 (1964) 46–52.

    Article  Google Scholar 

  29. E. Shamoto, T. Aoki, B. Sencer, N. Suzuki, R. Hino and T. Koide, Control of chip flow with guide grooves for continuous chip disposal and chip-pulling turning, CIRP Annals–Manuf. Technol., 60 (2011) 125–128.

    Article  Google Scholar 

  30. A. D’Acunto, G. L. Coz, A. Moufki and D. Dudzinski, Effect of cutting edge geometry on chip flow direction–analytical modelling and experimental validation, Procedia CIRP, 58 (2017) 353–357.

    Article  Google Scholar 

  31. M. J. Bermingham, J. Kirsch, S. Sun, S. Palanisamy and M. S. Dargusch, New observations on tool life, cutting forces and chip morphology in cryogenic machining Ti-6Al-4V, Int. J. Mach. Tools Manuf., 51 (2011) 500–511.

    Article  Google Scholar 

  32. M. J. Bermingham, S. Palanisamy, D. Kent and M. S. Dargusch, A comparison of cryogenic and high pressure emulsion cooling technologies on tool life and chip morphology in Ti–6Al–4V cutting, J. Mater. Process. Technol., 212 (2012) 752–765.

    Article  Google Scholar 

  33. Y. H. Kang and C. M. Zheng, Mathematical modelling of chip thickness in micro-end-milling: a Fourier modelling, Appl. Math. Model., 37 (2013) 4208–4223.

    Article  Google Scholar 

  34. L. Zhu, H. Li and C. Liu, Analytical modeling on 3D chip formation of rotary surface in orthogonal turn-milling, Arch. Civ. Mech. Eng., 16 (2016) 590–604.

    Article  Google Scholar 

  35. A. Pleta, F. A. Niaki and L. Mears, Investigation of chip thickness and force modelling of trochoidal milling, Procedia Manuf., 10 (2017) 612–621.

    Article  Google Scholar 

  36. K, Okushima and K. Hitomi, Flank wear progress and variation of tool forces, Bull. Jpn. Soc. Precis. Eng., 29 (1963) 304–309.

    Article  Google Scholar 

  37. Geospatial Information Authority of Japan, http://www.gsi.go.jp/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Nikawa.

Additional information

Recommended by Associate Editor Yongho Jeon

Makoto Nikawa received his B.S. in 1998, M.S. in 2000, and Ph.D. in 2003 from the University of Fukui, Japan, and currently as Associate Professor in Gifu University, Japan. His research interests include die- and mold-based casting, injection molding, and precision cutting applications.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikawa, M., Okada, M., Mori, H. et al. Evaluation of machinability in milling by controlling chip thickness using NC simulation. J Mech Sci Technol 32, 4851–4858 (2018). https://doi.org/10.1007/s12206-018-0933-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-018-0933-y

Keywords

Navigation