Skip to main content
Log in

Aerodynamic shape optimization of wind turbine rotor blades considering aeroelastic deformation effect

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

An aerodynamic shape optimization framework of two modules is developed for improving the aerodynamic performance of wind turbine rotor blades. The first module conducts CFD-based aeroelastic analysis for the complete blade configuration to evaluate the turbine performance and to extract the sectional flow conditions at selected blade sections. The second module performs 2-D shape optimization of blade sections to maximize the lift-to-drag ratio under given sectional flow conditions. When the optimization is completed for all selected blade sections, the performance and sectional flow characteristics of the new blade reconfigured from the optimized sections are evaluated again by the CFD-based aeroelastic analysis. The above procedure is repeated until the solution converges satisfactorily. Applications were made for the NREL phase VI and the NREL 5MW reference wind turbines. The results showed that the optimization framework can be effectively utilized in enhancing the aerodynamic performance of wind turbine blades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Fuglsang and H. A. Madsen, Optimization method for wind turbine rotors, J. Wind Eng. Ind. Aerod., 80 (1) (1999) 191–206.

    Article  Google Scholar 

  2. W. Xudong, W. J. Shen, J. N. Zhu, J. N. Sørensen and C. Jin, Shape optimization of wind turbine blades, Wind Energy, 12 (8) (2009) 781–803.

    Article  Google Scholar 

  3. J. J. Chattot, Optimization of wind turbines using helicoidal vortex method, J. Sol. Energ-T ASME, 125 (4) (2003) 417–425.

    Article  Google Scholar 

  4. E. Benini and A. Toffolo, Optimal design of horizontal-axis wind turbines using blade-element theory and evolutionary computation, J. Sol. Energ-T ASME, 124 (4) (2002) 357–363.

    Article  Google Scholar 

  5. H. I. Kwon, J. Y. You and O. J. Kwon, Enhancement of wind turbine aerodynamic performance by a numerical optimization technique, JMST, 26 (2) (2012) 455–462.

    Google Scholar 

  6. A. Viré, J. Xiang, F. Milthaler, P. E. Farrell, M. D. Piggott, J. P. Latham, D. Pavlidis and C. C. Pain, Modeling of fluidsolid interactions using an adaptive mesh fluid model coupled with a combined finite-discrete element model, Ocean Dynamics, 62 (10-12) (2012) 1487–1501.

    Article  Google Scholar 

  7. G. Hou, J. Wang and A. Layton, Numerical methods for fluid-structure interaction–a review, Communication in Computational Physics, 12 (2) (2012) 337–377.

    MathSciNet  Google Scholar 

  8. M. J. Smith, J. W. Lim, B. G. van der Wall, J. D. Baeder, R. T. Biedron, D. D. Boyd, B. Jayaraman, S. N. Jung and B. Y. Min, An assessment of CFD/CSD prediction state-of-the-art using the HART II international workshop data, American Helicopter Society 68th Annual Forum, Fort Worth, TX, USA.

  9. A. J. Chorin, A numerical method for solving incompressible viscous flow problems, J. Comput. Phys., 135 (2) (1997) 118–125.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. J. Ahn and O. J. Kwon, Numerical investigation of a pump-jet with ring rotor using an unstructured mesh technique, JMST, 29 (7) (2015) 2897–2904.

    Google Scholar 

  11. P. L. Roe, Approximate Riemann solver, parameter vectors and difference, J. Comput. Phys., 43 (2) (1981) 357–372.

    Article  MathSciNet  MATH  Google Scholar 

  12. S. R. Mathur and J. Y. Murthy, A pressure-based method for unstructured meshes, Numer. Heat Transfer Part B, 31 (2) (1997) 195–215.

    Article  Google Scholar 

  13. R. B. Lantry and F. R. Menter, Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes, AIAA J, 47 (12) (2009) 2894–2906.

    Article  Google Scholar 

  14. C. L. Bottasso, D. Detomi and R. Serra, The ball-vertex method: a new simple spring analogy method for unstructured dynamic meshes, Comput. Method Appl. M, 194 (39) (2005) 4244–4264.

    Article  MATH  Google Scholar 

  15. D. B. Kholodar, S. A. Morton and R. M. Cummings, Deformation of unstructured viscous grids, AIAA Paper No. 2005-0926 (2005).

  16. D. H. Hodges and E. H. Dowell, Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades, NASA TN 7818 (1974).

  17. H. Sobieczky, Parametric airfoils and wings, Notes on Numerical Fluid Mechanics, 68 (2009) 71–88.

    Google Scholar 

  18. J. A. Snyman, Practical mathematical optimization: an introduction to basic optimization theory and classical and new gradient-based algorithms, Springer, New York, USA (1997).

    Google Scholar 

  19. G. N. Vanderplaats and S. R. Hansen, DOT user’s manual, VMA Engineering (1989).

    Google Scholar 

  20. M. Hand, D. Simms, L. J. Fingersh, D. Jager, S. Larwood, J. Cotrell and S. Schreck, Unsteady aerodynamics experiment phase VI: wind tunnel test configurations and available data campaigns, NREL/TP-500-29955 (2001).

    Google Scholar 

  21. C. Lindenburg, Analysis of the stationary measurements on the UAE phase VI rotor in the NASA Ames wind tunnel, ECN-C-03-025 (2003).

    Google Scholar 

  22. N. N. Sørenson, CFD modeling of laminar-turbulent transition for airfoils and rotors using the g -R%eq model, Wind Energy, 12 (8) (2009) 715–733.

    Article  Google Scholar 

  23. J. Jonkman, S. Butterfield, W. Musial and G. Scott, Definition of a 5-MW reference wind turbine for offshore system development, NREL/TP-500-38060 (2009).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oh Joon Kwon.

Additional information

Recommended by Associate Editor Kyu Hong Kim

Dong Ok Yu is a Ph.D. student at the Computational Aerodynamics and Design Optimization Laboratory in the Department of Aerospace Engineering, KAIST, Korea. His research interests are CFD-CSD coupling and rotor systems.

Hak Min Lee is a Ph.D. student at the Computational Aerodynamics and Design Optimization Laboratory in the Department of Aerospace Engineering, KAIST, Korea. His research interests are design optimization and rotor aerodynamics.

Oh Joon Kwon is a Professor in the Department of Aerospace Engineering, KAIST, Korea. His research interests are CFD based on unstructured mesh technique, design optimization and rotor aerodynamics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, D.O., Lee, H.M. & Kwon, O.J. Aerodynamic shape optimization of wind turbine rotor blades considering aeroelastic deformation effect. J Mech Sci Technol 30, 705–718 (2016). https://doi.org/10.1007/s12206-016-0126-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-016-0126-5

Keywords

Navigation