Skip to main content
Log in

Performance investigation of a counter-rotating tidal current turbine by CFD and model experimentation

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Global warming is one of the issues in the world, which is mainly due to the burning of fossil fuels. Thus, alternative energy is now paramount in the 21st century. In Korea, the tidal currents in the southwestern sea have a wide range of currents that are available for tidal current power generation. Single rotor turbines can obtain a theoretical maximum power coefficient of 59.3%, whereas dual rotor turbines can attain a maximum of 64%. In this study, the performance and efficiency of a counter-rotating tidal current turbine is investigated when changing the front and rear blade angles at different water velocities. The investigation was conducted by using Computational fluid dynamics (CFD) and experimental methods highlighted in this study. When varying these parameters, changes in the streamlines were observed in the CFD results. The changes in flow stability over the blade surfaces observed in the numerical results were reflected in the power and power coefficient graphs presented in this study. The results obtained by the experiments were also shown to be in good agreement with the CFD results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. W. Kim, M. E. Lee, K. S. Lee, J. S. Park, W. M. Jeong, S. K. Kang, J. G. Soh and H. Kim, An overview of ocean renewable energy resources in Korea, Renewable and Sustainable Energy Reviews, 16 (2012) 2278–2288.

    Article  Google Scholar 

  2. K. W. Ng, W. H. Lam and K. C. Ng, 2002-2012: 10 Years of research progress in horizontal-axis marine current turbines, Energies, 6 (2013) 1497–1526.

    Article  Google Scholar 

  3. B. G. Newman, Multiple actuator-disc theory for wind turbines, Journal of Wind engineering and Industrial Aerodynamics, 24 (1986) 215–225.

    Article  Google Scholar 

  4. J. F. Manwell, J. G. McGowan and A. L. Rogers, Wind energy explained: theory, design and application, Wiley and Sons, England (2002) 111–113.

    Book  Google Scholar 

  5. C. J. Yang, Optimal rotor blade design for tidal in-stream energy, Journal of the Korean society of Marine Environment & Safety, 17 (1) (2011) 75–82.

    Article  Google Scholar 

  6. W. M. J. Batten, A. S. Bahaj and A. F. Molland, J. R. Chaplin and sustainable energy research group, Ocean Engineering, 34 (2007) 1013–1020.

    Article  Google Scholar 

  7. B. G. Kim, C. J. Yang and M. S. Choi, A study on the performance of an 100 kW class tidal current turbine, Journal of the Korean Society of Marine Environment & Safety, 18 (2) (2012) 145–152.

    Article  Google Scholar 

  8. N. J. Lee, I. C. Kim, C. G. Kim, B. S. Hyun and Y. H. Lee, Performance study on a counter-rotating tidal current turbine by CFD and model experimentation, Renewable Energy, 79 (2015) 122–126.

    Article  Google Scholar 

  9. ANSYS CFX. Solver modeling guide, ANSYS Inc. (2009) 113–119.

    Google Scholar 

  10. A. S. Bahaj, A. F. Molland, J. R. Chaplin and W. M. J. Batten, Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank, Renewable Energy, 32 (2007) 407–426.

    Article  Google Scholar 

  11. T. Y. Chen and L. R. Liou, Blockage corrections in wind tunnel tests of small horizontal axis wind turbines, Experimental Thermal and Fluid Science, 35 (2011) 565–589.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Ho Lee.

Additional information

Recommended by Guest Editor Hyung Hee Cho and Yulin Wu

Nak Joong Lee is currently undergoing his Ph.D. in Tidal Energy in the Korea Maritime and Ocean University. He completed his Bachelor’s Degree in Engineering in 2009 and his Master’s Degree in Engineering in 2012. His research interests include small hydropower, fluid machinery and computational fluid dynamics.

Young Ho Lee is currently a professor in the Division of Mechanical and Energy Systems at the Korea Maritime and Ocean University. He completed his Ph.D. in Engineering in Tokyo. His research interests include particle imaging velocimetry, renewable energy, fluid machinery, and computational fluid dynamics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, N.J., Kim, I.C., Hyun, B.S. et al. Performance investigation of a counter-rotating tidal current turbine by CFD and model experimentation. J Mech Sci Technol 30, 519–524 (2016). https://doi.org/10.1007/s12206-016-0104-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-016-0104-y

Keywords

Navigation