Skip to main content
Log in

Topology optimum design of unimorph piezoelectric cantilevered Mindlin plates as a vibrating electric harvester

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

An FEM-based topology optimization approach is proposed to calculate the topologies of a substrate plate and a piezoelectric layer used for vibrating unimorph cantilevered plate-like electricity generators (energy harvesters). The Mindlin plate theory was combined with a topology optimization algorithm to consider the shear effect. Each optimum topology for a plate and a piezoelectric layer is computed and combined by reflecting the natural frequencies of the substrate plate, electromechanical couplings of piezoelectric materials, tip masses and method of moving asymptotes. The piezoelectric coefficients such as elasticity, piezoelectric coupling and capacitance are interpolated by element density variables. The cantilevered plate generators with optimal topologies were designed for three piezoelectric materials such as PZT, PMN-PT and PMN-PT single crystal fiber MFC, and their voltage outputs were compared using a developed FEM-based optimization code to investigate the suitable material for harvesters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. J. Holler, D. A. Skoog and S. R. Crouch, Principles of instrumental analysis, Chapter 1, 6th ed., Cengage Learning (2007).

    Google Scholar 

  2. A. Manbachi and R. S. C. Cobbold, Development and application of piezoelectric materials for ultrasound generation and detection, Ultrasound, 19(4) (2011) 187–196.

    Article  Google Scholar 

  3. P. G. Jones, S. P. Beeby and N. M. White. Towards a piezoelectric vibration-powered microgenerator, IEEE Science, Measurement and Technology, 148 (2001) 68–72.

    Article  Google Scholar 

  4. T. Sterken, K. Baert, C. van Hoof, R. Puers, G. Borghs, P. Fiorini, I. Mcp and B. Leuven, Comparative modeling for vibration scavengers, Proc. IEEE sensors (2004) 1249–1252.

    Google Scholar 

  5. S. Roundy and P. K. Wright, A piezoelectric vibration based generator for wireless electronics, Smart Mater, 13(5) (2004) 1131–1142.

    Article  Google Scholar 

  6. Y. Liao and H. A. Sodano, Model of a single mode energy harvester and properties for optimal power generation, Smart Mater. Struct., 17(6) (2008) 065026.

    Article  Google Scholar 

  7. A. Erturk and D. J. Inman, On mechanical modeling of cantilevered piezoelectric vibration energy harvester, J. Intel. Mat. Sys. Struct., 19 (2008) 1311–1325.

    Article  Google Scholar 

  8. D. J. Inman and A. Erturk, A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters, J. Vib. Acoust., 130 (2008) 325–329.

    Google Scholar 

  9. J. Park, S. Lee and B. M. Kwak, Design optimization of piezoelectric energy harvester subject tip excitation, J. mech. Sci. Tech., 26(1) (2012) 137–143.

    Article  Google Scholar 

  10. M. Kögl amd E. C. N. Silva, Topology optimization of smart structures: design of piezoelectric plate and shell actuators, J. Smart mater. Struct., 14 (2005) 387–399.

    Article  Google Scholar 

  11. C. J. Rupp, A. Evgrafov, K. Maute and M. L. Dunn, Design of piezoelectric energy harvesting systems: A topology optimization approach based on multilayer plates and shells, J. Intel. Mat. Sys. Struct., 20 (2009) 1923–1939.

    Article  Google Scholar 

  12. B. Zheng, C. J. Chang and H. C. Gea, Topology optimization of energy harvesting devices using piezoelectric materials, Struct. Multidisc. Optim., 38 (2008) 17–23.

    Article  Google Scholar 

  13. A. Donoso and O. Sigmund, Optimization of piezoelectric bimorph actuators with active damping for static and dynamic loads, Struct. Multidiscip. Optim., 38(2) (2009) 171–183.

    Article  Google Scholar 

  14. A. Donoso, J. C. Bellido and J. M. Chacon, Numerical and analytical method for the design of piezoelectric modal sensors/actuators for shell-type structures, Int. J. Mumer. Methods Eng., 81 (2010) 1700–1712.

    MATH  Google Scholar 

  15. E. C. N. Silva and N. Kikuchi, Design of piezoelectric transducers using topology optimization, Smart mater. Struct., 8(3) (1999) 350–364.

    Article  Google Scholar 

  16. E. C. N. Silva et al., Design of piezoelectric materials and piezoelectric transducers using topology optimization — part I, Arch. Comput. Methods Eng., 6(3) (1999) 117–182.

    Article  Google Scholar 

  17. E. C. N. Silva, S. Nishiwaki and N. Kikuchi, Design of piezoelectric materials and piezoelectric transducers using topology optimization — part II, Arch. Comput. Methods Eng., 6(3) (1999) 191–222.

    Article  Google Scholar 

  18. R. C. Carbonari, E. C. N. Silva and S. Nishiwaki, Optimum placement of piezoelectric material in piezoactuator design, Smart. Mater. Struct., 16(1) (2007) 207–220.

    Article  Google Scholar 

  19. Z. Luo, L. Tong, J. Luo and M. Y. Wang, Design of piezoelectric actuators using a multiphase level set method piecewise constants, J. Comput. Phys., 228(7) (2009) 2643–2659.

    Article  MathSciNet  Google Scholar 

  20. S. Chen, S. Gonella, W. Chen and W. K. Liu, A level set approach for optimal design of smart energy harvesters, Comput. Methods Appl. Mech. Eng., 199(37–40) (2010) 2532–2543.

    Article  MathSciNet  Google Scholar 

  21. Z. Kang and X. Wang, Topology optimization of bending actuators with multilayer piezoelectric material, Smart Mater. Struct., 19 (2010) 075018.

    Article  Google Scholar 

  22. J. E. Kim, D. S. Kim, P. S. Ma and Y. Y. Kim, Multiphysics interpolation for the topology optimization of piezoelectric systems, Comput. Meth. Appl. Mech. Eng., 199 (2010) 3153–3168.

    Article  Google Scholar 

  23. J. Y. Noh and G. H. Yoon, Topology optimization of piezoelectric energy harvesting devices considering static and harmonic dynamic loads, Adv. Eng. Software, 53 (2012) 45–60.

    Article  Google Scholar 

  24. M. P. Bendsøe and O. Sigmund, Topology Optimization: Theory, Methods and Applications, Springer, Berlin (2003).

    MATH  Google Scholar 

  25. K. J. Bathe, Finite element procedures in engineering analysis, Prentice-Hall, New Jersey (1982).

    Google Scholar 

  26. O. Sigmund, A 99 line topology optimization code written in Matlab, Struct. Multidisc. Optim., 21(2) (2011) 120–127.

    Article  Google Scholar 

  27. ANSYS, ANSYS Release 8.0 documentation (2003).

    Google Scholar 

  28. S. Zhang, J. Luo, W. Hackenberger and T. R. Shrout, Characterization of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric crystal with enhanced phase transition temperatures, J. Appl. Phys., 104(6) (2008) 064106.

    Article  Google Scholar 

  29. M. W. Hyer, Stress analysis of fiber-reinforced composite materials, McGraw-Hill, New York (1998).

    Google Scholar 

  30. J. S. Park and J. H. Kim, Analytical development of single crystal macro fiber composite actuators for active twist rotor blades, Smart Mat. Struct., 14(4) (2005) 745–753.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheol Kim.

Additional information

Recommended by Associate Editor Gang-Won Jang

Cheol Kim received a B.S. degree in Mechanical Engineering from Yonsei University in 1985, his M.S. from Georgia Institute of Technology in 1989 and Ph.D. from the University of Illinois at Urbana-Champaign, USA, in 1994. He is currently a professor at the School of Mechanical Engineering at Kyungpook National University (KNU) in Daegu, Korea. His research interests include design optimization with smart materials, analysis of strength and structural vibration, and automotive battery materials.

Jinwoo Lee is currently a researcher in Hyundai Heavy Industries R&D Center. He received his B.S. and M.S. degrees in 2011 and 2013 respectively, from Kyungpook National University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, C., Lee, J. Topology optimum design of unimorph piezoelectric cantilevered Mindlin plates as a vibrating electric harvester. J MECH SCI TECHNOL 28, 4131–4138 (2014). https://doi.org/10.1007/s12206-014-0925-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-014-0925-5

Keywords

Navigation