Skip to main content
Log in

Critical Reappraisal of Casagrande and Taylor Methods for Coefficient of Consolidation

  • Geotechnical Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

Conventionally the experimental time-settlement data from an oedometer test are analyzed by standard curve-fitting methods, Casagrande’s log t method and Taylor’s root t method. This allows determination of the end of primary consolidation parameters, (EOP) as well as coefficient of consolidation, cv. Mentioned methods use both the initial and later part of the consolidation curve and are influenced by initial and secondary consolidation effects. In this study, the settlement-time data gathered from conventional oedometer tests conducted on various cohesive soils were analyzed. To assess the validity of each cv value, the experimental results were compared with the theoretical degree of consolidation curve and quantified using the scalar error function. The predictive ability of the Terzaghi consolidation model is also discussed. Based on the comparative study it has been revealed that Casagrande and Taylor methods are insufficient to correctly determine the consolidation parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Zoubi, M. S. (2008). “Coefficient of consolidation by the slope method.” ASTM Geotechnical Testing Journal, Vol. 31, No. 6, pp. 526–530, DOI: https://doi.org/10.1520/GTJ20130097.

    Google Scholar 

  • Al-Zoubi, M. S. (2010). “Consolidation analysis using the settlement rate-settlement (SRS) method” Applied Clay Science, Vol. 50, No. 1, pp. 34–40, DOI: https://doi.org/10.1016/j.clay.2010.06.020

    Article  Google Scholar 

  • Al-Zoubi, M. S. (2015). “Consolidation analysis by the extended taylor method (ETM).” Jordan Journal of Civil Engineering, Vol. 9, No. 1, pp. 71–83, DOI: https://doi.org/10.12816/0024606.

    Google Scholar 

  • Calvello, M. and Finno, R. J. (2004). “Selecting parameters to optimize in model calibration by inverse analysis.” Computers and Geotechnics, Vol. 31, No. 5, pp. 410–424, DOI: https://doi.org/10.1016/j.compgeo.2004.03.004.

    Article  Google Scholar 

  • Casagrande, A. and Fadum, R. E. (1940). Notes on soil testing for engineering purposes, Harvard Soil Mechanics Series, No. 8, Cambridge, Massachusetts, M.A., pp. 71.

  • Crawford, C. B. (1986). “State of the Art: Evaluation and interpretation of soil consolidation tests.” Consolidation of Soils: Testing and Evaluation, ASTM International, Philadelphia, PA, USA, DOI: https://doi.org/10.1520/STP34607S.

    Google Scholar 

  • Dobak, P. and Dziedzic, A. (2000). “Interpretacja badań konsolidacji z zastosowaniem opcji programowych arkusza kalkulacyjnego.” Proc. The XII, Konferencja Naukowa Korbielów2000. Metody Komputerowe w Projektowaniu i Analizie Konstrukcji Hydrotechnicznych, Korbielów, Poland, pp. 1–10.

    Google Scholar 

  • Dobak, P. and Gaszyński, J. (2015). “Evaluation of soil permeability from consolidation analysis based on Terzaghi’s and Biot’s theory.” Geological Quarterly, Vol. 59, No. 2, pp. 373–381, DOI: https://doi.org/10.7306/gq.1197.

    Google Scholar 

  • Duncan, J. M. (1993). “Limitations of conventional analysis of consolidation settlement.” Journal of Geotechnical Engineering, Vol. 119, No. 9, pp. 1333–1359.

    Article  Google Scholar 

  • Grimstad, G., Degago S. A., Nordal S., and Karstunen M. (2010). “Modeling creep and rate effects in structured anisotropic soft clays.” Acta Geotechnica, Vol. 6, pp. 69–81, DOI: https://doi.org/10.1007/s11440-010-0119-y.

    Article  Google Scholar 

  • Indraratna, B., Chu, J.. and Rujikiatkamjorn, C. (2015). Ground improvement case histories: Embankments with special reference to consolidation and other physical methods, Butterworth-Heinemann, Oxford, UK, pp. 1–23.

    Google Scholar 

  • Jin, Y.-F., Yin, Z.-Y., Shen, S.-L., and Zhang, D.-M. (2016). “A new hybrid real-coded genetic algorithm and its application to parameters identification of soils.” Inverse Problems in Science and Engineering, Vol. 2016, pp. 1–24, DOI: https://doi.org/10.1080/17415977.2016.1259315.

    Google Scholar 

  • Leroueil, S. (1987). “Tenth canadian colloquium: Recent developments in consolidation of natural clays.” Canadian Geotechnical Journal, Vol. 25, No. 1, pp. 85–107, DOI: https://doi.org/10.1139/t88-010.

    Article  Google Scholar 

  • Levasseur, S., Malécot, Y., Boulon, M., and Flavigny, E. (2008). “Soil parameter identification using a genetic algorithm.” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 32, No. 2, pp. 189–213, DOI: https://doi.org/10.1002/nag.614.

    Article  MATH  Google Scholar 

  • Lovisa, J. and Sivakugan, N. (2013). “An in-depth comparison of cv values determined using common curve-fitting — Techniques.” Geotechnical Testing Journal, Vol. 36, No. 1, pp. 1–10, DOI: https://doi.org/10.1520/GTJ20120038.

    Article  Google Scholar 

  • Malécot, Y., Levasseur, S., Boulon, M., and Flavigny, E. (2004). “Inverse analysis of in-situ geotechnical measurements using a genetic algorithm.” Proc. The Ninth International Symposium on Numerical Models in Geomechanics — NUMOGIX’, Ottawa, Canada.

    MATH  Google Scholar 

  • Mesri, G. and Feng, T. W. (2014). “Consolidation of soils.” Geotechnical Special Publication, Vol. 233, pp. 322–337, DOI: https://doi.org/10.1061/9780784413265.026.

    Google Scholar 

  • Olek, B. S. (2017). Quasi-filtration phase of consolidation identification in terms of the new interpretation method of consolidometric test, Ph.D. Dissertation, AGH University of Science and Technology, Krakow, Poland.

    Google Scholar 

  • Olek, B. S. (2018). “Consolidation analysis of clayey soils using analytical tools.” Acta Geotechnica Slovenica, Vol. 2018, No 2, pp. 58–73, DOI: https://doi.org/10.18690/actageotechslov.15.2.58-73.2018.

    Article  Google Scholar 

  • Olek, B. S. and Woźniak, H. (2016). “Determination of quasi-filtration phase of consolidation based on experimental and theoretical course of the uniaxial deformation and distribution of pore pressure.” Geology, Geophysics & Environment, Vol. 42, No. 3, pp. 353–363, DOI: https://doi.org/10.7494/geol.2016.42.3.353.

    Article  Google Scholar 

  • Pal, S., Wathugala, W. G., and Kundu, S. (1996). “Calibration of a constitutive model using genetic algorithms.” Computers and Geotechnics, Vol. 19, No. 4, pp. 325–348, DOI: https://doi.org/10.1016/S0266-352X(96)00006-7.

    Article  Google Scholar 

  • Robinson, R. G. (1999). “Consolidation analysis with pore water pressure measurements.” Géotechnique, Vol. 49, No. 1, pp. 127–132, DOI: https://doi.org/10.1680/geot.1999.49.1.127.

    Article  Google Scholar 

  • Sebai, S. and Belkacemi, S. (2016). “Consolidation coefficient by combined probabilistic and least residuals methods.” Geotechnical Testing Journal, Vol. 39, No. 5, pp. 891–897, DOI: https://doi.org/10.1520/GTJ20150197.

    Article  Google Scholar 

  • Shukla, S., Sivakugan, N., and Das, B. (2009). “Methods for determination of the coefficient of consolidation and field observations of time rate of settlement — An overview.” International Journal of Geotechnical Engineering, Vol. 3, No. 1, pp. 89–108, DOI: https://doi.org/10.3328/IJGE.2009.03.01.89-108.

    Article  Google Scholar 

  • Sridharan, A. and Prakash, K. (1995). “Discussion on limitations of conventional analysis of consolidation settlement.” ASCE Journal of Geotechnical Engineering, Vol. 121, No. 6, pp. 517.

    Article  Google Scholar 

  • Sridharan, A. Prakash, K. and Asha, S. (1995). “Consolidation behavior of soils.” Geotechnical Testing Journal, Vol. 18, No. 1, pp. 58–68, DOI: https://doi.org/10.1520/GTJ10122J.

    Article  Google Scholar 

  • Suhonen, K. (2009). Creep of soft clay, PhD Dissertation, Aalto University, Helsinki, Finland.

    Google Scholar 

  • Taylor, D. W. (1948). Fundamentals of soil mechanics, John Wiley and Sons, New York, N.Y., pp. 238–239.

    Google Scholar 

  • Terzaghi, K. (1923). “Die berechnung der durchlassigkeitzifer des tones aus dem verlauf der hydrodynamischen spannungserscheinungen.” Mathematish-Naturwissenschaftliche, Akademie der Wissenschaften, Vol. 132, pp. 125–138 (in German).

    Google Scholar 

  • Terzaghi, K. and Peck, R. B. (1967). Soil mechanics in engineering practice. John Wiley & Sons, New York, N.Y., pp. 100–103.

    Google Scholar 

  • Tewatia, S. (1998). “Evaluation of true c v and instantaneous c v, and isolation of secondary consolidation.” Geotechnical Testing Journal, Vol. 21, No. 2, pp. 102–108, DOI: https://doi.org/10.1520/GTJ10748J.

    Article  Google Scholar 

  • Tewatia, S. K., Bose, S. K. Sridharan, A., and Rath, S. (2007). “Stress induced time dependent behavior of clayey soils.” Geotechnical Geological Engineering, Vol. 25, No. 2, pp. 239–255, DOI: https://doi.org/10.1007/s10706-006-9107-2.

    Article  Google Scholar 

  • Tewatia, S. K., Sridharan, A., Phalswal, M. K., Singh, M., and Rath, S. (2012). “Fastest rapid loading methods of vertical and radial consolidations.” International Journal of Geomechanics, Vol. 13, No. 4, pp. 332–339, DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0000213.

    Article  Google Scholar 

  • Tewatia, S. K. and K. Venkatachalam, K. (1997). “Improved √t method to evaluate consolidation test results.” Geotechnical Testing Journal, Vol. 20, No. 1, pp. 121–125, DOI: https://doi.org/10.1520/GTJ11426J.

    Article  Google Scholar 

  • Wong, L. S., Hashim, R., and Ali, F. H. (2009). “A review on hydraulic conductivity and compressibility of peat.” Journal of Applied Sciences, Vol. 9, No. 19, pp. 3207–3218, DOI: https://doi.org/10.3923/jas.2009.3207.3218.

    Article  Google Scholar 

  • Yin, Z.-Y., Jin, Y.-F., Shen, J. S., and Hicher, P. Y. (2017). “Optimization techniques for identifying soil parameters in geotechnical engineering: Comparative study and enhancement.” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 2018, No. 42, pp. 70–94, DOI: https://doi.org/10.1002/nag.2714.

    Google Scholar 

  • Zhu, Q.-Y., Yin, Z.-Y., Zhang, D.-M., and Huang, H.-W. (2017). “Numerical modeling of creep degradation of natural soft clays under one-dimensional condition.” KSCE Journal of Civil Engineering, KSCE, Vol. 21, No. 5, pp. 1668–1678, DOI: https://doi.org/10.1007/s12205-016-1026-016-1026-z.

    Article  Google Scholar 

Download references

Acknowledegments

Not Applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartłomiej Szczepan Olek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olek, B.S. Critical Reappraisal of Casagrande and Taylor Methods for Coefficient of Consolidation. KSCE J Civ Eng 23, 3818–3830 (2019). https://doi.org/10.1007/s12205-019-1222-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-019-1222-8

Keywords

Navigation