Skip to main content
Log in

Curve Number Estimation of Ungauged Catchments considering Characteristics of Rainfall and Catchment

  • Water Resources and Hydrologic Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

The Soil Conservation Service Curve Number (CN) method is widely used to calculate the flood runoff in ungauged catchments. However, the existing CN calculation method has a disadvantage in that it cannot calculate the CNs considering the spatiotemporal variability of rainfall in the ungauged catchments. In this study, the authors used a distributed rainfall-runoff model and a simple runoff generation method to generate the hourly runoffs of the ungauged catchments considering the spatiotemporal variability of rainfall, and estimate the CNs of the ungauged catchments using the generated runoff and the CN back calculation method. As a result of calculating the CNs of the ungauged catchments for past 20 rainfall events, the CNs had a large variability even in the same catchment. In addition, the mean CNs for the 20 rainfall events of independent ungauged catchments differed even if the ungauged catchments were close to each other. The method of estimating the CNs of the ungauged catchments presented in this study properly reflects the characteristics of actual rainfall and catchment, and thus can be usefully used to estimate valid CN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, M. B., Bathurst, J. C., Cunge, J. A., O’Connell, P. E., and Rasmussen, J. (1986). “An introduction to the european hydrological system— systeme hydrologique europeen,“SHE”, 1: History and philosophy of a physically-based, distributed modelling system.” Journal of Hydrology, Vol. 87, Nos. 1–2, pp. 45–59, DOI: 10.1016/0022-1694(86)90114-9.

    Article  Google Scholar 

  • Beven, K. (1981). “Kinematic subsurface stormflow.” Water Resources Research, Vol. 17, No. 5, pp. 1419–1424, DOI: 10.1029/WR017i005p01419.

    Article  Google Scholar 

  • Bonta, J. V. (1997). “Determination of watershed curve number using derived distributions.” Journal of Irrigation and Drainage Engineering, Vol. 123, No. 1, pp. 28–36, DOI: 10.1061/(ASCE)0733-9437(1997)123:1(28).

    Article  Google Scholar 

  • Choi, Y. S., Choi, C. K., Kim, H. S., Kim, K. T., and Kim, S. (2015). “Multi-site calibration using a grid-based event rainfall–runoff model: A case study of the upstream areas of the Nakdong River basin in Korea.” Hydrological Processes, Vol. 29, No. 9, pp. 2089–2099, DOI: 10.1002/hyp.10355.

    Article  Google Scholar 

  • Eckhardt, K. and Arnold, J. G. (2001). “Automatic calibration of a distributed catchment model.” Journal of Hydrology, Vol. 251, Nos. 1–2, pp. 103–109, DOI: 10.1016/S0022-1694(01)00429-2.

    Article  Google Scholar 

  • El-Hames, A. S. (2012). “An empirical method for peak discharge prediction in ungauged arid and semi-arid region catchments based on morphological parameters and SCS curve number.” Journal of Hydrology, Vol. 456, pp. 94–100, DOI: 10.1016/j.jhydrol.2012.06.016.

    Article  Google Scholar 

  • Freeze, R. A. and Cherry, J. A. (1979). Groundwater, Prentice Hall Inc., NJ, USA.

    Google Scholar 

  • Grimaldi, S., Petroselli, A., and Romano, N. (2013). “Green-Ampt Curve-Number mixed procedure as an empirical tool for rainfall–runoff modelling in small and ungauged basins.” Hydrological Processes, Vol. 27, No. 8, pp. 1253–1264, DOI: 10.1002/hyp.9303.

    Article  Google Scholar 

  • Gupta, H. V., Sorooshian, S., and Yapo, P. O. (1999). “Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration.” Journal of Hydrologic Engineering, Vol. 4, No. 2, pp. 135–143, DOI: 10.1061/(ASCE)1084-0699(1999)4:2(135).

    Article  Google Scholar 

  • Hawkins, R. H. (1973). “Improved prediction of storm runoff in mountain watersheds.” Journal of the Irrigation and Drainage Division, Vol. 99, No. 4, pp. 519–523, DOI: 10.1061/(ASCE)0733-9437(1993)119:2(334).

    Google Scholar 

  • Hawkins, R. H. (1993). “Asymptotic determination of runoff curve numbers from data.” Journal of Irrigation and Drainage Engineering, Vol. 119, No. 2, pp. 334–345, DOI: 10.1061/(ASCE)0733-9437(1993)119:2(334).

    Article  Google Scholar 

  • Hawkins, R. H., Hjelmfelt Jr, A. T., and Zevenbergen, A. W. (1985). “Runoff probability, storm depth, and curve numbers.” Journal of Irrigation and Drainage Engineering, Vol. 111, No. 4, pp. 330–340, DOI: 10.1061/(ASCE)0733-9437(1985)111:4(330).

    Article  Google Scholar 

  • Hawkins, R. H., Ward, T. J., Woodward, D. E., and Van Mullem, J. A. (2009). Curve number hydrology-state of practice, The ASCE/ EWRI Publication, p. 37.

    Google Scholar 

  • Jena, S. K., Tiwari, K. N., Pandey, A., and Mishra, S. K. (2012). “RS and Geographical Information System–based evaluation of distributed and composite curve number techniques.” Journal of Hydrologic Engineering, Vol. 17, No. 11, pp. 1278–1286, DOI: 10.1061/(ASCE)HE.1943-5584.0000651.

    Article  Google Scholar 

  • Kim, N. W. and Shin, M. J. (2017). “Experimental study of rainfall spatial variability effect on peak flow variability using a data generation method.” Journal of Korea Water Resources Association, Vol. 50, No. 6, pp. 359–371, DOI: 10.3741/JKWRA.2017.50.6.359 (in Korean).

    Google Scholar 

  • Klemeš, V. (1986). “Operational testing of hydrological simulation models.” Hydrological Sciences Journal, Vol. 31, No. 1, pp. 13–24, DOI: 10.1080/02626668609491024.

    Article  Google Scholar 

  • Lee, H., McIntyre, N., Wheater, H., and Young, A. (2005). “Selection of conceptual models for regionalisation of the rainfall-runoff relationship.” Journal of Hydrology, Vol. 312, Nos. 1–4, pp. 125–147, DOI: 10.1016/j.jhydrol.2005.02.016.

    Article  Google Scholar 

  • Legates, D. R. and McCabe, G. J. (1999). “Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation.” Water Resources Research, Vol. 35, No. 1, pp. 233–241, DOI: 10.1029/1998WR900018.

    Article  Google Scholar 

  • McCuen, R. H. (2002). “Approach to confidence interval estimation for curve numbers.” Journal of Hydrologic Engineering, Vol. 7, No. 1, pp. 43–48, DOI: 10.1061/(ASCE)1084-0699(2002)7:1(43).

    Article  Google Scholar 

  • McCuen, R. H. and Snyder, W. M. (1975). “A proposed index for comparing hydrographs.” Water Resources Research, Vol. 11, No. 6, pp. 1021–1024, DOI: 10.1029/WR011i006p01021.

    Article  Google Scholar 

  • Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., and Veith, T. L. (2007). “Model evaluation guidelines for systematic quantification of accuracy in watershed simulations.” Transactions of the ASABE, Vol. 50, No. 3, pp. 885–900, DOI: 10.13031/2013.23153.

    Article  Google Scholar 

  • Nagarajan, N. and Poongothai, S. (2012). “Spatial mapping of runoff from a watershed using SCS-CN method with remote sensing and GIS.” Journal of Hydrologic Engineering, Vol. 17, No. 11, pp. 1268–1277, DOI: 10.1061/(ASCE)HE.1943-5584.0000520.

    Article  Google Scholar 

  • Nash, J. E. and Sutcliffe, J. V. (1970). “River flow forecasting through conceptual models part I—A discussion of principles.” Journal of Hydrology, Vol. 10, No. 3, pp. 282–290, DOI: 10.1016/0022-1694(70)90255-6.

    Article  Google Scholar 

  • Parajka, J., Blöschl, G., and Merz, R. (2007). “Regional calibration of catchment models: Potential for ungauged catchments.” Water Resources Research, Vol. 43, No. 6, pp. W06406, DOI: 10.1029/2006WR005271.

    Article  Google Scholar 

  • Ponce, V. M. and Hawkins, R. H. (1996). “Runoff curve number: Has it reached maturity?” Journal of Hydrologic Engineering, Vol. 1, No. 1, pp. 11–19, DOI: 10.1061/(ASCE)1084-0699(1996)1:1(11).

    Article  Google Scholar 

  • Refsgaard, J. C. and Storm, B. (1996). “Construction, calibration and validation of hydrological models.” Distributed Hydrological Modelling, M. B. Abbott and J. C. Refsgaard, Eds., Kluwer Academic, pp. 41–54.

    Google Scholar 

  • Sahoo, G. B., Ray, C., and De Carlo, E. H. (2006). “Calibration and validation of a physically distributed hydrological model, MIKE SHE, to predict streamflow at high frequency in a flashy mountainous Hawaii stream.” Journal of Hydrology, Vol. 327, Nos. 1–2, pp. 94–109, DOI: 10.1016/j.jhydrol.2005.11.012.

    Article  Google Scholar 

  • Shaw, S. B. and Walter, M. T. (2009). “Improving runoff risk estimates: Formulating runoff as a bivariate process using the SCS curve number method.” Water Resources Research, Vol. 45, No. 3, pp. W03404, DOI: 10.1029/2008WR006900.

    Article  Google Scholar 

  • Simanton, J. R., Hawkins, R. H., Mohseni-Saravi, M., and Renard, K. G. (1996). “Runoff curve number variation with drainage area, Walnut Gulch, Arizona.” Transactions of the ASAE, Vol. 39, No. 4, pp. 1391–1394, DOI: 10.13031/2013.27630.

    Article  Google Scholar 

  • Smith, M. B., Koren, V., Zhang, Z., Zhang, Y., Reed, S. M., Cui, Z., and Anderson, E. A. (2012). “Results of the DMIP 2 Oklahoma experiments.” Journal of Hydrology, Vol. 418, pp. 17–48, DOI: 10.1016/j.jhydrol.2011.08.056.

    Article  Google Scholar 

  • Stewart, D., Canfield, E., and Hawkins, R. (2012). “Curve number determination methods and uncertainty in hydrologic soil groups from semiarid watershed data.” Journal of Hydrologic Engineering, Vol. 17, No. 11, pp. 1180–1187, DOI: 10.1061/(ASCE)HE.1943-5584.0000452.

    Article  Google Scholar 

  • Tedela, N. H., McCutcheon, S. C., Rasmussen, T. C., Hawkins, R. H., Swank, W. T., Campbell, J. L., and Tollner, E. W. (2012). “Runoff curve numbers for 10 small forested watersheds in the mountains of the eastern United States.” Journal of Hydrologic Engineering, Vol. 17, No. 11, pp. 1188–1198, DOI: 10.1061/(ASCE)HE.1943-5584.0000436.

    Article  Google Scholar 

  • Titmarsh, G. W., Cordery, I., and Pilgrim, D. H. (1995). “Calibration procedures for rational and USSCS design flood methods.” Journal of Hydraulic Engineering, Vol. 121, No. 1, pp. 61–70, DOI: 10.1061/(ASCE)0733-9429(1995)121:1(61).

    Article  Google Scholar 

  • US Department of Agriculture, Natural Resources Conservation Service (USDA–NRCS) (2004). “Part 630: Hydrology.” National Engineering Handbook, US Government Printing Office, Washington, DC, USA.

  • US Soil Conservation Service (SCS) (1972). “Hydrology.” National Engineering Handbook, US Government Printing Office, Washington, DC, USA.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mun-Ju Shin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, N.W., Shin, MJ. Curve Number Estimation of Ungauged Catchments considering Characteristics of Rainfall and Catchment. KSCE J Civ Eng 23, 1881–1890 (2019). https://doi.org/10.1007/s12205-019-0532-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-019-0532-1

Keywords

Navigation