Skip to main content
Log in

New Permeable Structure for Controlling Debris Flows in the Wenjiagou Gully

  • Geotechnical Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

Aimed to control debris flows more effectively, we attempt to develop a new structure called a “sloping roof grill dam”, which consists of guidance walls, separation grills and lateral deposit areas. A series of flume tests were performed to verify the function of this new structure, focusing on the trapping efficiency (β), deceleration efficiency (μ) and coarse-fine sediment separation extents (η) under different conditions of structure and debris flows. Experimental results show that both the trapping and deceleration efficiency increase with a decrease in permeability, whereas the separation extent shown the opposite effect. Multiple regression analysis indicates that β and η are linearly dependent on the permeability, deceleration efficiency and magnitudes of debris flow. In addition, an increase in beam gap can lead to an increase in the impact area downstream for the debris flow after the control of the structure. Finally, a two-level installation of the structure is tested to determine whether there is an enhancement of the debris control, which indicated that although the trapping effect of the two-level structure is considerably greater than that of a single-level structure (2.11 times at maximum), the separation extent of the two-level structure is not distinct and may be even lower.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blair, T. C. (2010). “Sedimentology of the debris-flow-dominated warm spring canyon alluvial fan, death valley.” California. Sedimentology. Vol. 46, No. 5, pp. 941–965, DOI: 10.1046/j.1365-3091.1999.00260.x.

    Article  Google Scholar 

  • Bowman, E. T., Laue, J., Imre, B., and Springman, S. M. (2010). “Experimental modelling of debris flow behaviour using a geotechnical centrifuge.” Canadian Geotechnical Journal, Vol. 47, No. 7, pp. 742–762, DOI: 10.1139/T09-141.

    Article  Google Scholar 

  • Brunkal, H. and Santi, P. (2016). “Exploration of design parameters for a dewatering structure for debris flow mitigation.” Engineering Geology, Vol. 208, pp. 81–92, DOI: 10.1016/j.enggeo.2016.04.011.

    Article  Google Scholar 

  • Cui, Y. F., Zhou, X. J., and Guo, C. X. (2017). “Experimental study on the moving characteristics of fine grains in wide grading unconsolidated soil under heavy rainfall.” Journal of Mountain Science, Vol. 14, No. 3, pp. 417–431, DOI: 10.1007/s11629-016-4303-x.

    Article  Google Scholar 

  • Costa, J. E. (1984). “Physical geomorphology of debris flows.” Developments and Applications of Geomorphology, pp. 268–317.

    Chapter  Google Scholar 

  • Coussot, P. and Meunier, M. (1996). “Recognition, classification and mechanical description of debris flows.” Earth-Science Reviews. Vol. 40, Nos. 3–4, pp. 209–227, DOI: 10.1016/0012-8252(95)00065-8.

    Article  Google Scholar 

  • Fei, X. J. and Shu, A. P. (2004). Movement mechanism and disaster control for debris flow [in Chinese], Tsinghua University Press.

    Google Scholar 

  • Guo, C. X., Zhou, J. W., Cui, P., Hao, M. H., and Xu, F. G. (2014). “A theoretical model for the initiation of debris flow in unconsolidated soil under hydrodynamic conditions.” Natural Hazards and Earth System Sciences Discussions, Vol. 2, No. 6, pp. 4487–4524, DOI: 10.5194/nhessd-2-4487-2014.

    Article  Google Scholar 

  • Han, W. and OU, G. (2006). “Efficiency of slit dam prevention against non-viscous debris flow.” Wuhan University Journal of Natural Sciences, Vol. 11, No. 4, pp. 865–869, DOI: 10.1007/BF02830178.

    Article  Google Scholar 

  • Hubl, J., Suda, J., Proske, D., and Scheidl, C. (2009). “Debris flow impact estimation.” Proceedings of International Symposium on Water Management and Hydraulic Engineering, Ohrid, Macedonia, pp. 137–148.

    Google Scholar 

  • Iverson, R. M. (1997). “The physics of debris flows.” Reviews of Geophysics. Vol. 35, No. 3, pp. 245–296, DOI: 10.1029/97RG00426.

    Article  Google Scholar 

  • Itoh, T., Horiuchi, S., Akanuma, J., Kaitsuka, K., Kuraoka, S., Morita, T., Sugiyama, M., and Mizuyama, T. (2011). “Fundamental hydraulic flume tests focused on sediment control function using a grid-type high dam.” Proceedings of 5th International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment, ASCE, Padua, Italy, pp. 1051–2061, DOI: 10.4408/IJEGE.2011-03.B-114.

    Google Scholar 

  • Jaeggi, M. N. R. and Pellandini, S. (1997). “Torrent check dams as a control measure for debris flows.” In: Armanini A, Michiue M (Eds.), Recent Developments on Debris Flows, Springer, Berlin, pp. 186–207, DOI: 10.1007/BFb0117769.

    Chapter  Google Scholar 

  • Jakob, D. M. and Hungr, O. (2005). Debris-flow Hazards and Related Phenomena, Springer Berlin Heidelberg.

    Google Scholar 

  • Johnson, P. A. and Mccuen, R. H. (1989). “Slit dam design for debris flow mitigation.” Journal of Hydraulic Engineering, Vol. 115, No. 9, pp. 1293–1296, DOI: 10.1061/(ASCE)0733-9429(1989)115:9(1293).

    Article  Google Scholar 

  • Kaitna, R., Palucis, M. M., Hill, K. M., and Dietrich, W. E. (2016). “Effects of coarse grain size distribution and fine particle content on pore fluid pressure and shear behavior in experimental debris flows.” Journal of Geophysical Research Earth Surface, Vol. 121, No. 2, pp. 415–441, DOI: 10.1002/2015JF003725.

    Article  Google Scholar 

  • Lien, H. P. (2003). “Design of slit dams for control stony debris flows.” International Journal of Sediment Research, Vol. 18, No. 1, pp. 74–87.

    Google Scholar 

  • Mizuyama, T. (2008). “Structural countermeasures for debris flow disasters.” International Journal of Erosion Control Engineering, Vol. 1, No. 2, pp. 38–43, DOI: 10.13101/ijece.1.38.

    Article  Google Scholar 

  • Ng, C. W. W., Choi, C., Kwan, J. S. H., Shiu, H. Y. K., Ho, K. S. S., and Koo, R. C. H. (2012). “Flume modelling of debris flow resisting baffles.” Proceedings of the One Day Seminar On Natural Terrain Hazard Mitigation Measures, pp. 17–18.

    Google Scholar 

  • Okubo, S., Ikeya, H., Ishikawa, Y., and Yamada, T. (1997). “Development of new methods for countermeasures against debris flows.” In: Armanini A, Michiue M. (Eds.), Recent Developments on Debris Flows. Springer, Berlin; Vol. 64, pp. 166–185, DOI: 10.1007/BFb0117768.

    Article  Google Scholar 

  • Rickenmann, D. (1999). “Empirical relationships for debris flows.” Natural Hazards, Vol. 19, No.1, pp. 47–77, DOI: 10.1023/A:1008064220727.

    Article  Google Scholar 

  • Shakesby, R. and Matthews, J. (2002). “Sieve deposition by debris flow on a permeable substrate, Leirdalen, Norway.” Earth Surf. Process. Landf, Vol. 27, No. 10, pp. 1031–1041, DOI: 10.1002/esp.390.

    Article  Google Scholar 

  • Silva, M., Costa, S., and Cardoso, A. H. (2015). “Effect of plan layout on the sediment control efficiency of slit-check dams for stony type debris flows mitigation.” River Basin Management, pp. 259–270. DOI: 10.2495/RM150231.

    Google Scholar 

  • Tang, C., Asch, T. W. J. V., Chang, M., Chen G. Q., Zhao, X. H., and Huang, X. C. (2012). “Catastrophic debris flows on 13 august 2010 in the Qingping area, southwestern china: the combined effects of a strong earthquake and subsequent rainstorms.” Geomorphology. Vols. 139–140, No. 2, pp. 559–576, DOI: 10.1016/j.geomorph.2011.12.021.

    Article  Google Scholar 

  • Vandine, D. F. (1996). Debris Flow Control Structures for Forest Engineering, British Columbia Ministry of Forests Research Program, Vancouver, B. C. (available at www.for.gov.bc.ca/hfd/pubs/Docs/Wp/Wp22.htm, 68 p.).

    Google Scholar 

  • Volkwein, A., Wendeler, C., and Guasti, G. (2011). “Design of flexible debris flow barriers.” Proc., Int. Conf. on Debris-Flow Hazard Mitigation: Mechanics, Prediction, and Assessment, Università La Sapienza, Roma, pp. 1093–1100, DOI: 10.4408/IJEGE.2011-03.B-118.

    Google Scholar 

  • Wendeler, C., Volkwein, A., McArdell, B. W., Rickenmann, D., Roth, A., and Denk, M. (2006). “Field testing and numerical modeling of flexible debris flow barriers.” In: the 6th International Conference on Physical Modelling in Geotechnics, Hongkong, pp. 1573–1578.

    Google Scholar 

  • Wendeler, C., Volkwein, A., Roth, A., Herzog, B., Hählen, N., and Wenger, M. (2008). “Hazard prevention using flexible multi-level debris flow barriers.” In Proc. of Int. Symp. Interpraevent, dornbirn, Austria, Band 1, pp. 547–554.

    Google Scholar 

  • Watanabe, M., Yoshitani, J., and Noro, T. (2008). “Debris-flow dewatering break.”: an efficient tool to control upstream debris-flow to secure road transportation and community safety. Proceedings of the First World Landslide Forum 18–21 November 2008. United Nations University, Tokyo, Japan.

    Google Scholar 

  • Wendeler, C. and Volkwein, A. (2015). “Laboratory tests for the optimization of mesh size for flexible debris-flow barriers.” Natural Hazards and Earth System Sciences, Vol. 15, No. 12, pp. 2099–2118, DOI: 10.5194/nhess-15-2597-2015.

    Google Scholar 

  • Xie, T., Yang, H., Wei, F., Gardner, J. S., Dai, Z., and Xie, X. (2014). “A new water–sediment separation structure for debris flow defense and its model test.” Bulletin of Engineering Geology and the Environment. Vol. 73, No. 4, pp. 947–958, DOI: 10.1007/s10064-014-0585-9.

    Article  Google Scholar 

  • Xie, T., Wei, F., Yang, H., Gardner, J. S, Xie, X., and Dai, Z. (2016). “Calculation of the separation grid design length in a new water–sediment separation structure for debris flow defense.” Bulletin of Engineering Geology and the Environment, Vol. 75, No. 1, pp. 101–108, DOI: 10.1007/s10064-015-0726-9.

    Article  Google Scholar 

  • Yu, B., Yang, Y. H., Su, Y. C., Huang, W. J., and Wang, G. F. (2010). “Research on the giant debris flow hazards in Zhouqu County, Gansu Province on August 7, 2010 [in Chinese].” Journal of Engineering Geology, Vol. 18, No. 4, pp. 437–444.

    Google Scholar 

  • You, Y., Chen, X., and Liu, J. (2011). ““8.13” extra large debris flow disaster in Wenjia Gully of Qingping Township, Mianzhu, Sichuan Province.” Journal of Catastrophology, Vol. 26, No. 4, pp. 68–72.

    Google Scholar 

  • Yong, L. I., Wang, B. L., Zhou, X. J., and Gou, W. C. (2015). “Variation in grain size distribution in debris flow.” Journal of Mountain Science, Vol. 12, No. 3 pp. 682–688, DOI: 10.1007/s11629-014-3351-3.

    Article  Google Scholar 

  • Zhang, J., Guo, Z. X., Cao, S. Y., and Singh, V. P. (2013). “Scale model for the confluent area of debris flow and main river: A case study of the wenjia gully.” Natural Hazards & Earth System Sciences, Vol. 13, No. 12, pp. 3083–3093, DOI: 10.5194/nhess-13-3083-2013.

    Article  Google Scholar 

  • Zhou, J. W., Cui, P., Yang, X. G., Su, Z. M., and Guo, X. J. (2016). “Debris flows introduced in landslide deposits under rainfall conditions: The case of Wenjiagou gully.” Journal of Mountain Science, Vol. 10, No. 3, pp. 249–260, DOI: 10.1007/s11629-013-2492-0.

    Google Scholar 

  • Zhou, J. W., Huang, K. X., Shi, C., Hao, M. H., and Guo, C. (2015). “Discrete element modeling of the mass movement and loose material supplying the gully process of a debris avalanche in the Bayi gully, Southwest China.” Journal of Asian Earth Sciences, Vol. 99, pp. 95–111, DOI: 10.1016/j.jseaes.2014.12.008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-wei Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Yf., Liang, C., Zhou, Hw. et al. New Permeable Structure for Controlling Debris Flows in the Wenjiagou Gully. KSCE J Civ Eng 22, 4293–4305 (2018). https://doi.org/10.1007/s12205-018-1038-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-018-1038-y

Keywords

Navigation