Skip to main content
Log in

Applications of unmanned aerial vehicles in fluvial remote sensing: An overview of recent achievements

  • Hydraulic Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

Previously, understanding of the fluvial process from the ecological, morphological, and hydrodynamic perspectives has largely relied on the limited scale of in-situ field observation or the sparse spatial and temporal scale of satellite-based remote sensing. However, with the recent advent of unmanned aerial vehicles (UAVs) and concurrent advances in sensor technology, measurement campaign has been revolutionized and the view of rivers has fundamentally changed from the local scale to the holistic scale; the perspective has shifted from a static to a dynamic one. UAVs can provide a fine spatial and temporal resolution of measurements with a relatively low cost, which, as compared to conventional satellite or pilot-controlled airborne systems, can be more suitable for the analysis of fluvial processes in narrow rivers and small lakes. In this paper, we comprehensively review and document various crucial achievements driven by UAVs-based remote sensing in fluvial environments, among a variety of other relevant applications. Specifically, the paper highlights the UAV-based fluvial remote sensing in terms of riparian vegetation, hazardous aquatic algae blooms, submerged morphology, water-surface slope, sediment, flow velocity, and disasters, including flood inundation mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abady, L., Bailly, J.-S., Baghdadi, N., Pastol, Y., and Abdallah, H. (2014). “Assessment of quadrilateral fitting of the water column contribution in Lidar waveforms on bathymetry estimates.” IEEE Geosci. Remote Sens. Lett., Vol. 11, No. 4, pp. 813–817, DOI: 10.1109/LGRS. 2013.2279271.

    Article  Google Scholar 

  • Adam, E., Mutanga, O., and Rugege, D. (2010). “Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review.” Wetlands Ecology and Management, Vol. 18, No. 3, pp. 281–96, DOI: 10.1007/s11273-009-9169-z.

    Article  Google Scholar 

  • Adams, S. M. and Friedland, C. J. (2011). “A survey of unmanned aerial vehicle (UAS) usage for imagery collection in disaster research and management.” 9th International Workshop on Remote Sensing for Disaster Response (Al-Harbi).

    Google Scholar 

  • Administration, Federal Aviation (2013). “Integration of Civil Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) Roadmap.”

  • AIA (2013). “Unmanned Aircraft Systems: Perceptions & potential.”

  • Allouis, T., Bailly, J. S., Pastol, Y., and Le Roux, C. (2010). “Comparison of LiDAR waveform processing methods for very shallow water bathymetry using Raman, near-infrared and green signals.” Earth Surf. Process. Landf., Vol. 35, No. 6, pp. 640–650, DOI: 10.1002/esp.1959.

    Google Scholar 

  • Amici, S., Turci, M., Giulietti, F., Giammanco, S., Spina, L. A., and Spampinato, L. (2013). “Volcanic environments monitoring by drones mud volcano case study.” International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-1/W2.

    Google Scholar 

  • Anderson, K. and Gaston, K. J. (2013). “Lightweight unmanned aerial vehicles will revolutionize spatial ecology.” Frontiers in Ecology and the Environment, Vol. 11, No. 3, pp. 138–146, DOI: 10.1890/120150.

    Article  Google Scholar 

  • Anker, Y., Hershkovitz, Y., Dor, E. B., and Gasith, A. (2014). “Application of aerial digital photography for macrophyte cover and composition survey in small rural streams.” River Research and Applications, Vol. 30, No. 7, pp. 925–937, DOI: 10.1002/rra.2700.

    Article  Google Scholar 

  • Antonarakis, A. S., Richards, K. S., and Brasington, J. (2008), “Objectbased land cover classification using airborne LiDAR.” Remote Sensing of Environment, Vol. 112, No. 6, pp. 2988–2998, DOI: 10.1016/j.rse.2008.02.004.

  • Baltsavias, E. P. (1999). “Airborne laser scanning: Existing systems and firms and other resources.” J. Photogramm. Remote Sensing, Vol. 54, Nos. 2-3, pp. 164–198.

    Article  Google Scholar 

  • Berni, J. A. J., Zarco-Tejada, P. J., Suárez, L., and Fereres, E. (2009). “Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle.” IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 3, pp. 722–738.

    Article  Google Scholar 

  • Bryant, R. G. and Gilvear, D. J. (1999). “Quantifying geomorphic and riparian land cover changes either side of a large flood event using airborne remote sensing: River Tay, Scotland.” Mountain Geomorphology, Vol. 29, pp. 307–321.

    Article  Google Scholar 

  • Burkart, Andreas., Cogliati, Sergio., Schickling, Anke., Rascher, Uwe., (2014). “A novel UAV-Based Ultra-Light weight spectrometer for field spectroscopy.” Sensor Journal, Vol. 14, No. 1, pp. 62–67.

    Article  Google Scholar 

  • Burkart, A., Aasen, H., Alonso, L., Menz, G., Bareth, G., and Rascher, U. (2015). “Angular dependency of hyperspectral measurements over wheat characterized by a Novel UAV based goniometer.” Remote Sens, Vol. 7, No. 1, pp. 725–746, DOI: 10.3390/rs70100725.

    Article  Google Scholar 

  • Candiago, S., Remondino, F., Giglio, M. D., Dubbini, M., and Gattelli, M. (2015). “Evaluating multispectral images and vegetation indices for precision farming applications from UAV images.” Remote Sens, Vol. 7, No. 4, pp. 4027–4047, DOI: 10.3390/rs70404026.

    Article  Google Scholar 

  • Carbonneau, P. E. and Bergeron, N. (2005). “Automated grain size measurements from airborne remote sensing for long profile measurements of fluvial grain sizes.” Water Resources Research, Vol. 41, W11426.

    Article  Google Scholar 

  • Charogiannis, A., Zadrazil, I., and Markides, C. N. (2016). “Thermographic Particle Velocimetry (TPV) for simultaneous interfacial temperature and velocity measurements.” International Journal of Heat and Mass Transfer, Vol. 97, pp. 589–595, DOI: 10.1016/j.ijheatmasstransfer. 2016.02.050.

    Article  Google Scholar 

  • Chinnov, E. A., Shatskii, E. N., and Kabov, O. A. (2012), “Evolution of the temperature field at the three-dimensional wave front in a heated liquid film.” High Temperature, Vol. 50, No. 1, pp. 98–105.

    Article  Google Scholar 

  • Chou, T., Yeh, M., Chen, Y., and Chen, Y. (2010), “Disaster monitoring and management by the unmanned aerial vehicle technology.” International Society for Photogrammetry and Remote Sensing (Vienna, Austria).

    Google Scholar 

  • Colomina, I. and Molina, P. (2014). “Unmanned aerial systems for photogrammetry and remote sensing: A review.” ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 92, No. 6, pp. 79–97, DOI: 10.1016/j.isprsjprs.2014.02.013

    Article  Google Scholar 

  • Creutin, J. D., Muste, M., Bradley, A. A., Kim, S. C., and Kruger, A. (2003). “River gauging using PIV techniques: A proof of concept experiment on the Iowa river.” Journal of Hydrology, Vol. 277, Nos. 3-4, pp. 182–194.

    Article  Google Scholar 

  • Díaz-Varela, R. A., Rosa, R., León, L., and Zarco-Tejada, P. J. (2015), “High-Resolution airborne UAV imagery to assess olive tree crown parameters using 3D Photo reconstruction: Application in breeding trials.” Remote Sens, Vol. 7, pp. 4213–32, DOI: 10.3390/rs70404213.

  • Dierssen, H. M., Chlus, A., and Russell, B. (2015). “Hyperspectral discrimination of floating mats of seagrass wrack and the macroalgae Sargassum in coastal waters of Greater Florida Bay using airborne remote sensing.” Remote Sensing of Environment, Vol. 167, No. 9, pp. 247–258, DOI: 10.1016/j.rse.2015.01.027.

    Article  Google Scholar 

  • Elko, N., Feddersen, F., Foster, D., Hapke, C., McNinch, J., Mulligan, R., Ozkan-Haller, H. T., Plant, N., and Raubenheimer, B. (2014). The future of nearshore processes research, The Nearshore Processes Community.

    Google Scholar 

  • Entwistle, N. S., Milan, D. J., and Heritage, G. L. (2010). “Biotope mapping using combined LiDAR and acoustic doppler profiler survey.” British Hydrological Society (Newcastle, UK.).

    Book  Google Scholar 

  • Ettema, R., Fujita, I., Muste, M., and Kruger, A. (1997). “Particle-image velocimetry for whole-field measurement of ice velocities.” Cold Regions Science and Technology, Vol. 26, No. 2, pp. 97–112.

    Article  Google Scholar 

  • Feng, Q., Liu, J., and Gong, J. (2015a). “Urban flood mapping based on unmanned aerial vehicle remote sensing and random forest classifier—A case of Yuyao, China.” Directory of Open Access Journals, Vol. 7, No. 4, pp. 1437–1455, DOI: 10.3390/w7041437.

    Google Scholar 

  • Feng, Q., Liu, J., and Gong, J. (2015b), “UAV Remote sensing for urban vegetation mapping using random forest and texture analysis.” Remote Sens, Vol. 7, No. 1, pp. 1074–94, DOI: 10.3390/rs70101074.

    Article  Google Scholar 

  • Fernandez-Diaz, J. C., Glennie, C. L., Carter, W. E., Shrestha, R. L., Sartori, M. P., Singhania, A., Legleiter, C. J., abd Overstreet, B. T. (2014). “Early results of simultaneous terrain and shallow water bathymetry mapping using a single-wavelength airborne LiDAR sensor.” IEEE J. Sel. Top. Appl. Earth Obs.Remote Sens., Vol. 7, No. 2, pp. 623–635.

    Article  Google Scholar 

  • Flynn, K. F. and Chapra, S. C. (2014), “Remote sensing of submerged aquatic vegetation in a shallow Non-Turbid river using an unmanned aerial vehicle.” Remote Sens, Vol. 6, No. 12, pp. 12815–36, DOI: 10.3390/rs61212815, DOI: 10.3390/rs61212815.

    Article  Google Scholar 

  • Fonstad, M. A. and Marcus, W. A. (2005). “Remote sensing of stream depths with Hydraulically Assisted Bathymetry (HAB) models.” Geomorphology, Vol. 72, Nos. 1-4, pp. 320–39, DOI: 10.1016/j.geomorph.2005.06.005.

    Article  Google Scholar 

  • Fonstad, M. A., Dietrich, J. T., Courville, B. C., Jensen, J. C., and Carbonneau, P. E. (2013). “Topographic structure from motion: A new development in photogrammetric measurement.” Earch Surface Process and Landforms, Vol. 38, No. 4, pp. 421–430, DOI: 10.1002/esp.3366.

    Article  Google Scholar 

  • Fráter, T., Juzsakova, T., Lauer, J., Dióssy, L., and Rédey, A. (2015). “Unmanned aerial vehicles in environmental monitoring—An efficient way for remote sensing.” Journal of Environmental Science and Engineering A, Vol. 4, pp. 85–91.

    Google Scholar 

  • Fujita, I., Komura, S. (1994). “Application of video image analysis for measurements of river-surface flows.” Proc. of Hydraulic Engineering, JSCE, Vol. 38, No. 2, pp. 733–738.

    Article  Google Scholar 

  • Fujita, I., Aya, S., and Deguchi, T. (1997). “Surface velocity measurement of river flow using video images of an oblique angle.” Proc., 27th IAHR Congress, Theme B, San Francisco.

    Google Scholar 

  • Fujita, I., Muste, M., and Kruger, A. (1998). “Large-scale particle image velocimetry for flow analysis in hydraulic application.” Journal of Hydraulic Research, Vol. 36, No. 3, pp. 397–414.

    Article  Google Scholar 

  • Fujita, I. and Hino, T. (2003). “Unseeded and seeded PIV measurements of river flows videotaped from a helicopter.” Journal of Visualization, Vol. 6, No. 3, pp. 245–252.

    Article  Google Scholar 

  • Fujita, I., Watanaba, H., and Tsubaki, R. (2007). “Development of a nonintrusive and efficient flow monitoring technique: The space time image velocimetry (STIV).” International Journal of River Basin Management, Vol. 5, No. 2, pp. 105–114.

    Article  Google Scholar 

  • Fujita, I. and Kunita, Y. (2011). “Application of aerial LSPIV to the 2002 flood of the Yodo River using a helicopter mounted high density video camera.” Journal of Hydro-environment Research, Vol. 5, pp. 323–31, DOI: 10.1016/j.jher.2011.05.003.

    Article  Google Scholar 

  • Fujita, I. (2013a), “Utilization of far-infrared-ray camera for imagebased measurement of river flow and discharge.” Nagare, Vol. 32, pp. 347–352. (in Japanese).

    Google Scholar 

  • Fujita, I., Kosaka, Y., Yorozuya, A., and Motonaga, Y. (2013). “Surface flow measurement of snow melt flood by using a far infrared camera.” J. of Japan Society of Civil Engineers, Vol. 69, No. 4, pp. 703–708.

    Google Scholar 

  • Fujita, I., Notoya, Y., and Shimono, M. (2015). “Development of UAVbased river surface velocity measurements by STIV based on ighaccurate image stabilization technique.” E-proceedings of the 36th IAHR World Congress (The Hague, the Netherlands).

    Google Scholar 

  • Geipel, J., Link, J., and Claupein, W. (2014). “Combined spectral and spatial modeling of corn yield based on aerial images and crop surface models acquired with an unmanned aircraft system.” Remote Sens, Vol. 6, No. 11, pp. 10335–10355, DOI: 10.3390/rs61110335.

    Article  Google Scholar 

  • Getzin, S., Nuske, R. S., and Wiegand, K. (2014). “Using Unmanned Aerial Vehicles (UAV) to quantify spatial gap patterns in forests.” Remote Sens, Vol. 6, No. 8, pp. 6988–7004, DOI: 10.3390/rs6086988.

    Article  Google Scholar 

  • Ghazal, M., Khalil, Y. A., and Hajjdiab, H. (2015). “UAV-based remote sensing for vegetation cover estimation using NDVI imagery and level sets method.” 2015 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT) (Abu Dhabi, UAE.).

    Google Scholar 

  • Gilvear, D. and Bryant, R. (2005). Tools in Fluvial Geomorphology (John Wiley & Sons, Ltd).

    Google Scholar 

  • Handcock, R. N., Gillespie, A. R., Cherkauer, K. A., Kay, J. E., Burges, S. J., and Kampf, S. K. (2006), “Accuracy and uncertainty of thermal-infrared remote sensing of stream temperatures at multiple spatial scales.” Remote Sensing of Environment, Vol. 100, No. 4, pp. 427–440, DOI: 10.1016/j.rse.2005.07.007.

    Article  Google Scholar 

  • Hauet, A., Kruger, A., Krajewski, W. F., Bradley, A., Muste, M., and Creutin, J. D. (2008). “Experimental system for real-time discharge estimation using an image-based method.” Journal of Hydrological Engineering, Vol. 13, No. 2, pp. 105–110.

    Article  Google Scholar 

  • Hestir, E. L., Brando, V.E., Bresciani, M., Giardino, C., and Matta, E. (2015). “Measuring freshwater aquatic ecosystems: The need for a hyperspectral global mapping satellite mission.” remote Sensing of Environment, Vol. 167, No. 9, pp. 181–95, DOI: 10.1016/j.rse.2015.05.023.

    Article  Google Scholar 

  • Hicks, D. M. (2012). Gravel-bed River Chap.23 Remotely Sensed Topographic Change in Gravel Riverbeds with Flowing Channels (Wiley-Blackwell).

    Google Scholar 

  • Hilldale, R. C. and Raff, D. (2008). “Assessing the ability of airborne LiDAR to map river bathymetry.” Earth Surface Processes and Landforms, Vol. 33, No. 5, pp. 773–783.

    Article  Google Scholar 

  • Hruska, R., Mitchell, J., Anderson, M., and Glenn, N. F. (2012). “Radiometric and geometric analysis of hyperspectral imagery acquired from an unmanned aerial vehicle.” Remote Sens, Vol. 4, No. 9, pp. 2736–2752, DOI: 10.3390/rs4092736.

    Article  Google Scholar 

  • Hu, C., Feng, L., Hardy, R. F., and Hochberg, E. J. (2015). “Spectral and spatial requirements of remote measurements of pelagic Sargassum macroalgae.” Remote Sensing of Environment, Vol. 167, No. 9, pp. 229–245, DOI: 10.1016/j.rse.2015.05.022.

    Article  Google Scholar 

  • Hugenholtz, C. H., Whitehead, K., Brown, O. W., Barchyn, T. E., Moorman, B. J., LeClair, A., Riddell, K., and Hamilton, T. (2013). “Geomorphological mapping with a small unmanned aircraft system (sUAS): Feature detection and accuracy assessment of a photogrammetrically-derived digital terrain model.” Geomorpholgy, Vol. 194, No. 7, pp. 16–24, DOI: 10.1016/j.geomorph.2013.03.023.

    Article  Google Scholar 

  • Hung, C., Xu, Z., and Sukkarieh, S. (2014). “Feature learning based approach for weed classification using high resolution aerial images from a digital camera mounted on a UAV.” Remote Sens, Vol. 6, No. 12, pp. 12037–12054, DOI: 10.3390/rs61212037.

    Article  Google Scholar 

  • Huerta, M. P. (2013). Integration of Civil Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) Roadmap, U.S. Department of Transportation, 1st Edition.

    Google Scholar 

  • Husson, E., Hager, O., and Ecke, F. (2013). “Unmanned aircraft systems help to map aquatic vegetation.” Applied Vegetation Science, Vol. 17, No. 3, pp. 567–577, DOI: 10.1111/avsc.12072©2013 The Authors Applied Vegetation Science published by John Wiley & Sons Ltd.

    Article  Google Scholar 

  • Irish, J. L. and Lillycrop, W. J. (1999). “Scanning laser mapping of the coastal zone: The SHOALS system.” J. Photogramm. Remote Sens., Vol. 54, Nos. 2-3, pp. 123–129.

    Article  Google Scholar 

  • Irish, J. L, McClung, J. K., Lillycrop, W. J., Chust, G., Grande, M., Galparsoro, I., Uriarte, A., Borja, Á., Tuell, G., and Barbor, K. (2010). “Airborne lidar bathymetry: The SHOALS system.” Bull. Navig. Assoc., Vol. 7695, No. 103, pp. 43–54.

    Google Scholar 

  • Javernick, L., Brasington, J., and Caruso, B. (2014). “Modeling the topography of shallow braided rivers using Structure-from-Motion photogrammetry.” Geomorphology, Vol. 213, No. 5, pp. 166–182, DOI: 10.1016/j.geomorph.2014.01.006.

    Article  Google Scholar 

  • Jung, H., Hamski, J., Durand, M., Alsdorf, D., Hossain, F., Lee, H., Hossain, A. K. M. A., Hasan, K., Khan, A. S., and Hoque, A. K. M. Z. (2010). “Characterization of complex fluvial systems using remote sensing of spatial and temporal water level variations in the Amazon, Congo, and Brahmaputra Rivers.” Earth Surface Processes and Landforms, Vol. 35, No. 3, pp. 294–304, DOI: 10.1002/esp.1914.

    Article  Google Scholar 

  • Kantoush, S. A., Schleiss, A. J., Sumi, T., and Murasaki, M. (2011). “LSPIV implementation for environmental flow in various laboratory and field cases.” Journal of Hydro-environment Research, Vol. 5, No. 4, pp. 263–276.

    Article  Google Scholar 

  • Kim, S., Yu, K., and Yoon, B. (2015). “Consideration of far infrared cameras for measuring surface flow velocity in night time.” Proceedings of the 36th IAHR Congress, The Hague, Netherlands.

    Google Scholar 

  • Kinzel, P. J., Wright, C. W., Nelson, J. M., and Burman, A. R. (2007). “Evaluation of an experimental LiDAR for surveying a shallow, braided, sand-bedded river.” Journal of Hydraulic Engineering, Vol. 133, No. 7, pp. 838–842.

    Article  Google Scholar 

  • Kudela, R. M., Palacios, S. L., Austerberry, D. C., and Accorsi, E. K. (2015). “Application of hyperspectral remote sensing to cyanobacterial blooms in inland waters.” Remote Sensing of Environment, Vol. 167, No. 9, pp. 196–205, DOI: 10.1016/j.rse.2015.01.025.

    Article  Google Scholar 

  • Kutser, T., Vahtmae, E., and Martin, G. (2006). “Assessing suitability of multispectral satellites for mapping benthic macroalgal cover in turbid coastal waters by means of model simulations.” Estuarine, Coastal and Shelf Science, Vol. 67, No. 3, pp. 521–29, DOI: 10.1016/j.ecss.2005.12.004.

    Article  Google Scholar 

  • Kutser, T., Metsamaa, L., Strombeck, N., and Vahtmae, E. (2006). “Monitoring cyanobacterial blooms by satellite remote sensing.” Estuarine, Coastal and Shelf Science, Vol. 67, Nos. 1-2, pp. 303–12, DOI: 10.1016/j.ecss.2005.11.024.

    Article  Google Scholar 

  • Le Coz, J., Hauet, A., Pierrefeu, G., Dramais, G., and Camenen, B. (2010). “Performance of image-based velocimetry (LSPIV) applied to flash-flood discharge measurements in Mediterranean rivers.” Journal of Hydrology, Vol. 394, No. 12, pp. 42–52, DOI: 10.1016/j.jhydrol.2010.05.049.

    Article  Google Scholar 

  • Lee I., Kang, J., and Seo, G. (2013). “Applicability analysis of ultra-light UAV for flooding site survey in South Korea.” International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W1, ISPRS Hannover Workshop 2013, 21-24 May 2013, Hannover, Germany.

    Google Scholar 

  • Lee, C. M., Cable, M. L., Hook, S. J., Green, R. O., Ustin, S. L., Mandl, D. J., and Middleton, E. M. (2015). “An introduction to the NASA Hyperspectral InfraRed Imager (HyspIRI) mission and preparatory activities.” Remote Sensing of Environment, Vol. 167, No. 9, pp. 6–19, DOI: 10.1016/j.rse.2015.06.012.

    Article  Google Scholar 

  • Legleiter, C. J. (2003). “Spectrally driven classification of high spatial resolution, hyperspectral imagery: A tool for mapping in-stream habitat.” Environmental Management, Vol. 32, No. 3, pp. 399–411.

    Article  Google Scholar 

  • Legleiter, C. J., Roberts, D. A., Marcus, W. A., and Fonstad, M. A. (2004). “Passive optical remote sensing of river channel morphology and instream habitat: Physical basis and feasibility.” Remote Sensing of Environment, Vol. 93, pp. 493–510, DOI: 10.1016/j.rse.2004.07.019.

    Article  Google Scholar 

  • Legleiter, C. J. and Roberts, D. A. (2009). “A forward image model for passive optical remote sensing of river bathymetry.” Remote Sensing of Environment, Vol. 113, No. 5, pp. 1025–10245, DOI: 10.1016/j.rse.2009.01.018.

    Article  Google Scholar 

  • Leonahard, B. G. (2013). “Monitoring the Eutrophication of Lakes and Harmful Algal Blooms using Satellite data”.

  • Lucieer, A., Malenovsky, Z., Veness, T., and Wallace, L. (2014). “Hyper UAS—Imaging Spectroscopy from a Multirotor Unmanned Aircraft System.” Journal of Field Robotics, Vol. 31, No. 4, pp. 571–90, DOI: 10.1002/rob.21508.

    Article  Google Scholar 

  • Mallet, C. and Bretar, F. (2009). “Full-waveform topographic lidar: State-of-the-art.” J. Photogramm. Remote Sens., Vol. 64, pp. 1–16.

    Article  Google Scholar 

  • Marcus, W. A. (2002). “Mapping of stream microhabitats with high spatial resolution hyperspectral imagery.” Journal of Geographical Systems, Vol. 4, No. 1, pp. 113–126.

    MathSciNet  Google Scholar 

  • Marcus, W. A., Legleiter, C. J., Aspinall, R. J., Boardman, J. W., and Crabtree, R. L. (2003). “High spatial resolution hyperspectral mapping of in-stream habitats, depths, and woody debris in mountain streams.” Mountain Geomorphology -Integrating Earth Systems, Proceedings of the 32nd Annual Binghamton Geomorphology Symposium, Vol. 55, No. s 1-4, pp. 363–380, DOI: 10.1016/S0169-555X(03)00150-8.

    Google Scholar 

  • Marcus, W. A. and Fonstad, M. A. (2008). “Optical remote mapping of rivers at sub-meter resolutions and watershed extents.” Earth Surface Processes and Landforms, Vol. 33, No. 1, pp. 4–24, DOI: 10.1002/esp.1637.

    Article  Google Scholar 

  • Marcus, W. A. (2012). Gravel Bed River Chap.21 Remote Sensing of the Hydraulic Environment in Gravel-bed Rivers (Wiley-Blackwell) 580.

    Google Scholar 

  • Markides, C. N., Mathie, R., and Charogiannis, A. (2015). “An experimental study of spatio-temporally resolved heat transfer in thin liquid-film flows falling over an inclined heated foil.” International Journal of Heat Mass Transfer, Vol. 93, No. 2, pp. 872–888.

    Google Scholar 

  • Matese, A., Toscano, P., Gennaro, S. F. D., Genesio, L., Vaccari, F. P., Primicerio, J., Belli, C., Zaldei, A., Bianconi, R., and Gioli, B. (2015). “Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision viticulture.” Remote Sens, Vol. 7, No. 3, pp. 2971–90, DOI: 10.3390/rs70302971.

    Article  Google Scholar 

  • Matthews, M. W., Bernard, S., and Winter, K. (2010). “Remote sensing of cyanobacteria-dominant algal blooms and water quality parameters in Zeekoevlei, a small hypertrophic lake, using MERIS.” Remote Sensing of Environment, Vol. 114, No. 9, pp. 2070–87, DOI: 10.1016/j.rse.2010.04.013.

    Article  Google Scholar 

  • Mckean, J., Isaak, D., and Wright, W. (2009a). “Improving stream studies with a small-footprint green lidar.” Earth & Space Science News, Vol. 90, No. 39, pp. 341–342.

    Google Scholar 

  • McKean, J., Nagel, D., Tonina, D., Bailey, P., Wright, C. W. Bohn, C., and Nayegandhi, A. (2009b). “Remote sensing of channels and riparian zones with a narrow-beam aquatic-terrestrial LIDAR.” Remote Sens, Vol. 1, No. 4, pp. 1065–96, DOI: 10.3390/rs1041065.

    Article  Google Scholar 

  • McLean, J. W. (2015). “Bathymetric Mapping from a Small UAV.” Sea Technology, August 1, 2015. Merrick and Company (2016). http://www.merrik.com.

    Google Scholar 

  • Merwade, V. M. (2007). “An automated GIS Procedure for Delineating river and lake boundaries.” Transactions in GIS, Vol. 11, No. 2.

  • Merwe, D. V. and Price, K. P. (2015). “Harmful algal bloom characterization at ultra-high spatial and temporal resolution using small unmanned aircraft systems.” Toxins -Open Access Toxinology Journal, Vol. 7, No. 4, pp. 1065–1078, DOI: 10.3390/toxins7041065.

    Google Scholar 

  • Milan, D. J., Heritage, G. L., Large, A. R. G., and Entwistle, N. S. (2010). “Mapping hydraulic biotopes using terrestrial laser scan data of water surface properties.” Earth Surface Processes and Landforms, Vol. 35, No. 8, pp. 918–31, DOI: 10.1002/esp.1948.

    Article  Google Scholar 

  • Milan, D. J. and Heritage, G. L. (2012), Gravel-bed River Chap.22 LiDAR and ADCP Use in Gravel-bed Rivers: Advances Since GBR6 (Wiley-Blackwell).

    Google Scholar 

  • Mumby, P. J., Green, E. P., Edwards, A. J., and Clark, C. D. (1999). “The cost-effectiveness of remote sensing for tropical coastal resources assessment and management.” J. Environ. Manag., Vol. 55, No. 3, pp. 157–166, DOI: 10.1006/jema.1998.0255.

    Article  Google Scholar 

  • Muste, M., Fujita, I., and Hauet, A. (2008). “Large-scale particle image velocimetry for measurements in riverine environments.” Water Resources Research, Vol. 44, No. 4, W00D19, DOI: 10.1029/2008WR006950.

    Article  Google Scholar 

  • Muste, M., Ho, H-C., and Kim, D. (2011). “Considerations on direct stream flow measurements using video imagery: Outlook and research needs.” Journal of Hydro-environment Research, Vol. 5, No. 4, pp. 289–300.

    Article  Google Scholar 

  • Muste, M., Kim, D., and Merwade, V. (2012). Gravel-bed River Chap.24 Modern Digital Instruments and Techniques for hydrodynamic and Morphologic Characterization of River Channels (Wiley-Blackwell).

    Google Scholar 

  • Nayegandhi, A., Wright, C. W., and Brock, J. C. (2009). “EAARL: An Airborne LiDAR System for Mapping Coastal and Riverine Environments, in Bayer, J.M., and Schei, J.L., eds., PNAMP Special Publication: Remote Sensing Applications for Aquatic Resource Monitoring.” (Washington: Pacific Northwest Aquatic Monitoring Partnership, Cook), pp. 3–5.

    Google Scholar 

  • Nex, F. and Remondino, F. (2014). “UAV for 3D mapping applications: A review.” Applied Geomatics, Vol. 6, No. 1, pp. 1–15, DOI: 10.1007/s12518-013-0120-x.

    Article  Google Scholar 

  • Pan, Z., Glennie, C., Hartzell, P., Fernandez-Diaz, J. C., Legleiter, C., and Overstreet, B. (2015). “Performance assessment of high resolution airborne full waveform LiDAR for shallow river bathymetry.” Remote Sensing, Vol. 7, No. 5, pp. 5133–59, DOI: 10.3390/rs70505133.

    Article  Google Scholar 

  • Patalano, A., García, C. M., Brevis, W., Bleninger, T., Guillen, N., Moreno, L., and Rodriguez, A. (2015). “Recent advances in Eulerian and Lagragian large-scale particle image velocimetry.” E-proceedings of the 36th IAHR World Congress (The Hague, the Netherlands).

    Google Scholar 

  • Pearlamn, J. S., Barry, P. S., Segal, C. C, Shepanski, J., Beiso, D., and Carman, S. L. (2003). “Hyperion, a space-based imaging spectrometer.” Transactions on Geoscience and Remote Sensing, Vol. 41, No. 6, pp. 1160–1173.

    Article  Google Scholar 

  • Pozo, S. D., Rodríguez-Gonzálvez, P., Hernández-López, D., and Felipe-Garcí, B. (2014). “Vicarious radiometric calibration of a multispectral camera on board an unmanned aerial system.” Remote Sens, Vol. 6, No. 3, pp. 1918–37, DOI: 10.3390/rs6031918.

    Article  Google Scholar 

  • Randolph, K., Wilson, J., Tedesco, L., Li, L., Pascual, D. L., and Soyeux, E. (2008). “Hyperspectral remote sensing of cyanobacteria in turbid productive water using optically active pigments, chlorophyll a and phycocyanin.” Remote Sensing of Environment, Vol. 112, No. 11, pp. 4009–4019, DOI: 0.1016/j.rse.2008.06.002.

    Article  Google Scholar 

  • Rango, A., Laliberte, A., Herrick, J.E., Winters, C., Havstad, K., Steele, C., and Browning, D. (2009). “Unmanned aerial vehicle-based remote sensing for rangeland assessment, monitoring, and management.” Journal of Applied Remote Sensing, DOI: 10.1117/1.3216822.

  • Richardson, J. J. and Moskal, L. M. (2014). “Assessing the utility of green LiDAR for characterizing bathymetry of heavily forested narrow streams.” Remote Sens. Lett., Vol. 5, pp. 352–357.

    Article  Google Scholar 

  • RIEGL (2017). “sUAV-Based Surveying System for Hydrographic Applications.” Riedenburgstrasse, Austria, http://www.ricopter.com.

  • Rummel, A. C., Carmer, C. F., and Jirka, G. H. (2002). “Combined planar measurements of flow velocity and mass concentration in shallow turbulent flow, Part 1: Development of a Planar Concentration Analysis (PCA) system.” Hydraulic Measurements and Experimental Methods, Estes Park, Colorado, July 28 -August 1.

    Google Scholar 

  • Salamí, E., Barrado, C., and Pastor, E. (2014). “UAV flight experiments applied to the remote sensing of vegetated areas.” Remote Sens, Vol. 6, No. 11, pp. 11051–11081, DOI: 10.3390/rs61111051.

    Article  Google Scholar 

  • Scaioni, M., Longoni, L., Melillo, V., and Papini, M. (2014). “Remote sensing for landslide investigations: An overview of recent achievements and perspectives.” Remote Sens, Vol. 6, No. 10, pp. 9600–9652, DOI: 10.3390/rs60x000x.

    Article  Google Scholar 

  • Shuchman, R. A., Sayers, M. J., and Brooks, C. N. (2013). “Mapping and monitoring the extent of submerged aquatic vegetation in the Laurentian Great Lakes with multi-scale satellite remote sensing.” J. Great Lakes Res., Vol. 39, Supplement 1, pp. 78–89.

    Article  Google Scholar 

  • Silva, T. S. F., Costa, M. P. F., Melack, J. M., and Novo, E. M. L. M. (2008). “Remote sensing of aquatic vegetation: Theory and applications.” Environmental Monitoring and Assessment, Vol. 140, No. 1, pp. 131–145, DOI: 10.1007/s10661-007-9855-3.

    Article  Google Scholar 

  • Smeeckaert, J., Mallet, C., and David, N. (2013). “Classification of Water Surfaces using Airborne Topographic LiDAR Data”, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (XL-1/W1; Hannover, Germany).

    Google Scholar 

  • Su, T. and Chou, H. (2015). “Application of multispectral sensors carried on Unmanned Aerial Vehicle (UAV) to trophic state mapping of small reservoirs: A case study of tain-pu reservoir in kinmen, Taiwan.” Remote Sensing, pp. 10078–10097, DOI: 10.3390/rs70810078.

    Google Scholar 

  • Suomalainen, J., Anders, N., Iqbal, S., Roerink, G., Franke, J., Wenting, P., Hü nniger, D., Bartholomeus, H., Becker, R., and Kooistra, L. (2014). “A lightweight hyperspectral mapping system and photogrammetric processing chain for unmanned aerial vehicles.” Remote Sens, Vol. 6, No. 11, pp. 11013–11030, DOI: 10.3390/rs6111101.

    Article  Google Scholar 

  • Tauro, F., Petroselli, A., and Arcageletti, E. (2016), “Assessment of drone-based surface flow observations.” Hydrological Processes, Vol. 30, No. 7, pp. 1114–1130, DOI: 10.1002/hyp.10698.

    Article  Google Scholar 

  • Tong, Q., Xue, Y., and Zhang, L. (2014). “Progress in hyperspectral remote sensing science and technology in china over the past three decades.” Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 7, No. 1, pp. 70–91.

    Article  Google Scholar 

  • Tralli, D. M., Blom, R. G., Zlotnicki, V., Donnellan, A., and Evans, D. L. (2005). “Satellite remote sensing of earthquake, volcano, flood, landslide and coastal inundation hazards.” ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 59, No. 4, pp. 185–198, DOI: 10.1016/j.isprsjprs.2005.02.002.

    Article  Google Scholar 

  • Tsubaki, R., Fujita, I., and Tsutsumi, S. (2011). “Measurement of the flood discharge of a small-sized river using an existing digital video recording system.” Journal of Hydro-environment Research, Vol. 5, No. 4, pp. 313–321.

    Article  Google Scholar 

  • Turner, D., Lucieer, A., Malenovský, Z., King, D. H., and Robinson, S. A. (2014). “Spatial Co-Registration of Ultra-High resolution visible, multispectral and thermal images acquired with a Micro-UAV over antarctic moss beds.” Remote Sens, Vol. 6, No. 5, pp. 4003–4024, DOI: 10.3390/rs6054003.

    Article  Google Scholar 

  • Uto, K., Seki, H., Saito, G., and Kosugi, Y. (2013). “Characterization of rice paddies by a UAV-Mounted miniature hyperspectral sensor system.” Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 6, No. 2, pp. 851–860.

    Article  Google Scholar 

  • Vahtmae, E., Kutser, T., Martin, G., and Kotta, J. (2006). “Feasibility of hyperspectral remote sensing for mapping benthic macroalgal cover in turbid coastal waters—a Baltic Sea case study.” Remote Sensing of Environment, Vol. 101, No. 3, pp. 342–351, DOI: 10.1016/j.rse.2006.01.009.

    Article  Google Scholar 

  • VeloDyne (2015). HDL-32L High Definition LiDAR Sensor–User’s manual and programming guide [online text].

  • Wang, C., Li, Q., Liu, Y., Wu, G., Liu, P., and Ding, X. (2015). “A comparison of waveform processing algorithms for single-wavelength LiDAR bathymetry.” J. Photogramm. Remote Sens., Vol. 101, No. 3, pp. 22–35.

    Article  Google Scholar 

  • Watts, A. C., Ambrosia, V. G., and Hinkley, E. A. (2012). “Unmanned aircraft systems in remote sensing and scientific research: Classification and considerations of use.” Remote Sens, Vol. 4, No. 6, pp. 1671–1692, DOI: 10.3390/rs4061671.

    Article  Google Scholar 

  • Wehr, A. and Lohr, U. (1999). “Airborne laser scanning—An introduction and overview.” Photogramm. Remote Sens., Vol. 54, Nos. 2-3, pp. 68–82.

    Article  Google Scholar 

  • Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., and Reynolds, J. M. (2012). “Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications.” Geomorphology, Vol. 179, No. 12, pp. 300–314, DOI: 10.1016/j.geomorph.2012.08.021.

    Article  Google Scholar 

  • Wilson, J. F., Cobb, E. D., and Kilpatrick, F. A. (1986). Fluorometric procedures for dye tracing, Techniques of Water-Resources Investigations 03-A12, U.S. Geological Survey.

    Google Scholar 

  • Yan, F. L., Wang, S. X., Zhou, Y., and Xiao, Q. (2006). “Monitoring the water quality of Taihu lake by using Hyperion hyperspectral data.” J. Infrared Millim. Waves, Vol. 25, No. 6, pp. 460–464.

    Google Scholar 

  • Yu, K., Kim, S., Yoon, B., and Bae, I. (2015). “Evaluation of far infrared camera for surface image velocimeter versatile in day and night measurement.” J. of Korean Water Resources Association, Vol. 48, No. 8, pp. 659–672.

    Article  Google Scholar 

  • Yu, K. and Yoon, B. (2016). “Development of a portable surface image velocimeter by using a far infra-red camera.” Proceedings of River Flow 2016, St. Louis, USA.

    Google Scholar 

  • Zarco-Tejada, P. J., Gonzalez-Dugo, V., and Berni, J. A. J. (2012). “Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera.” Remote Sensing of Environment, Vol. 117, No. 2, pp. 322–337, DOI: 10.1016/j.rse.2011.10.007.

    Article  Google Scholar 

  • Zarco-Tejada, P. J., Morales, A., Testi, L., and Villalobos, F. J. (2013), “Spatio-temporal patterns of chlorophyll fluorescence and physiological and structural indices acquired from hyperspectral imagery as compared with carbon fluxes measured with eddy covariance.” Remote Sensing of Environment, Vol. 133, pp. 102–115, DOI: 10.1016/j.rse.2013.02.003.

    Article  Google Scholar 

  • Zhang, C. and Kovacs, J. M. (2012). “The application of small unmanned aerial systems for precision agriculture: A review”, Precision Agriculture, Vol. 13, No. 6, pp. 693–712, DOI: 10.1007/s11119-012-9274-5.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongsu Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rhee, D.S., Kim, Y.D., Kang, B. et al. Applications of unmanned aerial vehicles in fluvial remote sensing: An overview of recent achievements. KSCE J Civ Eng 22, 588–602 (2018). https://doi.org/10.1007/s12205-017-1862-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-017-1862-5

Keywords

Navigation