Skip to main content
Log in

The Effect of FEM Mesh Density on the Failure Probability Analysis of Structures

  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

In the analysis of finite elements, mesh density can highly influence the accuracy of the results. Hence, researchers consider the determination and refinement of mesh an attractive issue. However, the subject has not been suitably investigated for the reliability evaluation of structures. This paper investigates the effects of mesh density on the reliability evaluation and the reliability-based sensitivity of structures. For this purpose, two common engineering problems modeled by Finite Element Method (FEM), with different mesh densities and their reliability results determined by Monte Carlo simulation and polynomial Response Surface Methodology (RSM). The analytical solutions to the proposed problems were present in the literature. Hence, the effects of the FEM mesh densities on the reliability results could be compared with the theoretical results. The outcomes based on the FEM results showed that RSM can very accurately evaluate the performance of these structures. However, the main achievement of the study was the finding that though a determined mesh density can be considered acceptable from the deterministic analysis viewpoint, its employment in reliability analysis could produce 100% error in estimating the failure probability of a structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amirat, A., Mohaned-Chateauneuf, A., and Chaoui, K. (2006). “Reliability assessment of underground pipelines under the combined effect of active corrosion and residual stress.” International Journal of Pressure Vessels and Piping, vol. 83, no. 2, pp. 107–117, DOI: 10.1016/j.ijpvp.

    Article  Google Scholar 

  • Ashford, S. A. and Sitar, N. (2001). “Effect of element size on the static finite element analysis of steep slopes.” Int. J. Numer. Anal. Meth. Geomech., vol. 25, no. 14, pp. 1361–1376, DOI: 10.1002/nag.184.

    Article  MATH  Google Scholar 

  • Besterfield, G. H., Liu, W. K., Lawrence, M., and Belyschko, T. (1990). “Brittle fracture reliability by probabilistic finite elements.” J. Eng. Mech. ASCE, vol. 116, no. 3, pp. 642–659, DOI: 10.1061/(ASCE) 0733-9399(1990)116:3(642).

    Article  Google Scholar 

  • Box, G. E. P. (1954). “The exploration and exploitation of response surfaces: Some general considerations and examples.” Biometrics, vol. 10, no. 1, pp. 16–60, DOI: 10.2307/3001663.

    Article  Google Scholar 

  • Brown, P. R. (1981). “A non-interactive method for the automatic generation of finite element meshes using the Schwarz-Christoffel transformation.” Comput. Methods Appl. Mech. Engrg., vol. 25, no. 1, pp. 101–126, DOI: 10.1016/0045-7825(81)90071-2.

    Article  MathSciNet  MATH  Google Scholar 

  • Bucher, C. G. and Bourgund, U. (1990). “A fast and efficient response surface approach for structural reliability problems.” Structural Safety, vol. 7, no. 1, pp. 57–66, DOI: 10.1016/0167-4730(90)90012-E.

    Article  Google Scholar 

  • Der kiureghian, A. and Ke, J. B. (1998). “The stochastic finite element method in structural reliability.” Probabilistic Engineering Mechanics, Vol. 3, No. 2, DOI: 10.1016/0266-8920(88)90019-7.

    Google Scholar 

  • Di Sciuva, M. and Lomario, D. (2003). “A comparison between Monte Carlo and FORMs in calculating the reliability of a composite structure.” Composite Structures, vol. 59, no. 1, pp. 155–162, DOI: 10.1016/S0263-8223(02)00170-8.

    Article  Google Scholar 

  • Dyck, D. N., Lowther, D. A., and McFee, S. (1992). “Determining an approximate finite element mesh density using neural network techniques.” IEEE Transactions on Magnetics, vol. 28, no. 2, pp. 1767–1770, DOI: 10.1109/20.124047.

    Article  Google Scholar 

  • Faravelli, L. (1989). “Response surface approach for reliability analyses.” J. Eng. Mech. ASCE, vol. 115, no. 2, pp. 2763–2781, DOI: 10.1061/(ASCE)0733-9399(1989)115:12(2763).

    Article  Google Scholar 

  • Ghohani-Arab, H. and Ghasemi, M. R. (2015). “A fast and robust method for estimating the failure probability of structures.” P. I. Civil. Eng. Str B, vol. 168, no. 4, pp. 298–309, DOI: 10.1680/stbu. 13.00091.

    Google Scholar 

  • Gray, H. A., Taddei, F., Zavatsky, A. B., Cristofolini, L., and Gill, H. S. (2008). “Experimental validation of a finite element model of a human cadaveric tibia.” Journal of Biomechanical Engineering, Vol. 130, No. 3, DOI: 10.1115/1.2913335.

    Google Scholar 

  • Hamdia, K. M., Msekh, M. A., Silani, M., Vu-Bac, N., Zhuang, X., Nguyen-Thoi, T., and Rabczuk, T. (2015). “Uncertainty quantification of the fracture properties of polymeric nanocomposites based on phase field modeling.” Composite Structures, vol. 133, pp. 1177–1190, DOI: 10.1016/j.compstruct.2015.08.051.

    Article  Google Scholar 

  • Helton, J. C. and Davis, F. J. (2003). “Latin hypercube sampling and propagation of uncertainty in analysis of complex system.” Reliability Engineering and Safety, vol. 81, no. 1, pp. 23–69, DOI: 10.1016/S0951 8320(03)00058-9.

    Article  Google Scholar 

  • Hess, P., Bruchman, D., Assakkaf, I., and Ayyub, B. (2002). “Uncertainties in material strength, geometric and load variables.” Naval Engineering Journal, vol. 114, no. 2, pp. 139–166, DOI: 10.1111/j.1559-3584. 2002.tb00128.x.

    Article  Google Scholar 

  • Hu, K. and Zhang, Y. J. (2016). “Centroidal Voronoi tessellation based polycube construction for adaptive all-hexahedral mesh generation.” Comput. Methods Appl. Mech. Engrg., vol. 305, pp. 405–421, DOI: 10.1016/j.cma.2016.03.021.

    Article  MathSciNet  Google Scholar 

  • Hurtado, J. E. and Barbat, A. H. (1998). “Monte Carlo techniques in computational stochastic mechanics.” Archives of Computational in Engineering, vol. 5, no. 1, pp. 3–30, DOI: 10.1007/BF02736747.

    Article  MathSciNet  Google Scholar 

  • Idelsohn, S.R., Onate, E. (2006). “To mesh or not to mesh. That is the question….” Comput. Methods Appl. Mech. Engrg., vol. 195, Nos. 37–40, pp. 4681–4696, DOI: 10.1016/j.cma.2005.11.006.

    Article  MathSciNet  MATH  Google Scholar 

  • Jensen, H. A., Mayorga, F., and Papadimitriou, C. (2015). “Reliability sensitivity analysis of stochastic finite element models.” Comput. Methods Appl. Mech. Engrg., vol. 296, pp. 327–351, DOI: 10.1016/j.cma.2015.08.007.

    Article  MathSciNet  Google Scholar 

  • Jones, A. C. and Wilcox, R. K. (2008). “Finite element analysis of the spine: Towards a framework of verification, validation and sensitivity analysis.” Medical Engineering & Physics, vol. 30, no. 10, pp. 1287–1304, DOI: 10.1016/j.medengphy.2008.09.006.

    Article  Google Scholar 

  • Li, L. and Sun, L. (2016). “Experimental and numerical of crack behavior and life prediction of 18Cr2Ni4WA steel subjected to repeated impact loading.” Engineering Failure Analysis, vol. 65, pp. 11–25. DOI: 10.1016/j.engfailanal.2016.03.018.

    Article  Google Scholar 

  • Li, Z., Kindig, M. W., Subit, D., and Kent, R. W. (2010). “Influence of mesh density, cortical thickness and material properties on human rib fracture prediction.” Medical Engineering & Physics, vol. 32, no. 9, pp. 998–1008, DOI: 10.1016/j.medengphy.2010.06.015.

    Article  Google Scholar 

  • Lopez, R. H., Miguel, L. F. F., Belo, I. M., and Souza Cursi, J. E. (2014). “Advantages of employing a full characterization method over FORM in the reliability analysis of laminated composite plates.” Composite Structures, vol. 107, pp. 635–642, DOI: 10.1016/j.compstruct. 2013.08.024.

    Article  Google Scholar 

  • Melchers, R. E. (1999). Structural reliability analysis and prediction, Chichester: John Wiley & Sons.

    Google Scholar 

  • Moxey, D., Green, M. D., Sherwin, S. J., and Peiro, J. (2015). “An isoparametric approach to high-order curvilinear boundary-layer meshing.” Comput. Methods Appl. Mech. Engrg., vol. 283, pp. 636–650, DOI: 10.1016/j.cma.2014.09.019.

    Article  MathSciNet  Google Scholar 

  • Myers, R., Montgomery, D., and Anderson-cook, C. (2009). Response surface methodology, John Wiley & Sons.

    MATH  Google Scholar 

  • Nowak, A. S. and Collins, K. R. (2000). Reliability of structures, McGraw-Hill, New York.

    Google Scholar 

  • Pasbani Khiavi, M. (2016). “Investigation of the effect of reservoir bottom absorption on seismic performance of concrete gravity dams using sensitivity analysis.” KSCE Journal of Civil Engineering, vol. 20, no. 5, pp. 1977–1986, DOI: 10.1007/s12205-015-1159-5.

    Article  Google Scholar 

  • Perillo-Marcone, A., Alonso-Vazquez, A., and Taylor, M. (2003). “Assessment of the effect of mesh density on the material property discretisation within QCT based FE models: A practical example using the implanted proximal tibia.” Computer Methods in Biomechanics and Biomedical Engineering, vol. 6, no. 1, pp. 17–26, DOI: 10.1080/1025584031000064470.

    Article  Google Scholar 

  • Rashki, M., Miri, M., and Azhdary-Moghadam, M. (2012). “A new efficient simulation method to approximate the probability of failure and most probable point.” Structural Safety, vol. 39, pp. 22–29, DOI: 10.1016/j.strusafe.2012.06.003.

    Article  Google Scholar 

  • Roth, S. and Oudry, J. (2009). “Influence of mesh density on a finite element model under dynamic loading.” Proceedings of 3rd European Hyperworks Technology Conference, November 2nd-4th, Ludwigsburg, Germany.

    Google Scholar 

  • Timm, D., Birgisson, B., and Newcomb, D. (1998). “Variability of mechanistic-empirical flexible pavement design parameters.” Proceedings of the Fifth International Conference on the Bearing Capacity of Roads and Airfields, Vol. 1, Norway, pp. 629–638.

    Google Scholar 

  • Timoshenko, S. and Woinowsky-Krieger, S. (1959). Theory of plates and shells, McGraw-Hill.

    MATH  Google Scholar 

  • Waide, V., Cristofolini, L., Stolk, J., Verdonschot, N., Boogaard, G. J., and Toni, A. (2004). “Modeling the fibrous tissue layer in cemented hip replacement: finite element methods.” J. Biomech, vol. 37, no. 1, pp. 13–26, DOI: 10.1016/S0021-9290(03)00258-6.

    Article  Google Scholar 

  • Xu, T., Xiang, T., Zhao, R., Yang, G., and Yang, Ch. (2016). “Stochastic analysis on flexural behavior of reinforced concrete beams based on piecewise response surface scheme.” Engineering Failure Analysis, vol. 59, pp. 211–222, DOI: 10.1016/j.engfailanal.2015.10.004.

    Article  Google Scholar 

  • Yao, Sh., Zhang, D., Chen, X., Lu, F., and Wang, W. (2016). “Experimental and numerical study on the dynamic response of RC slabs under blast loading.” Engineering Failure Analysis, vol. 66, pp. 120–129, DOI: 10.1016/j.engfailanal.2016.04.027.

    Article  Google Scholar 

  • Young, W. C. and Budynas, R. G. (2001). Roark’s formulas for stress and strain, McGraw-Hill.

    Google Scholar 

  • Zhao, Y. G. and Ono, T. (2001). “Moment methods for structural reliability.” Structural Safety, vol. 23, no. 1, pp. 47–75, DOI: 10.1016/S0167-4730(00) 00027-8.

    Article  Google Scholar 

  • Zmudzki, J., Walke, W., and Chladek, W. (2008). “Influence of model discretization density in FEM numerical analysis on the determined stress level in bone surrounding dental implants.” Information Tech. in Biomedicine, ASC, vol. 47, pp. 559–567, DOI: 10.1007/978-3-540-68168-7_64.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Rashki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghavidel, A., Mousavi, S.R. & Rashki, M. The Effect of FEM Mesh Density on the Failure Probability Analysis of Structures. KSCE J Civ Eng 22, 2370–2383 (2018). https://doi.org/10.1007/s12205-017-1437-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-017-1437-5

Keywords

Navigation