Skip to main content
Log in

Static skin friction behavior of a single micropile in sand

  • Geotechnical Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

Numerical pile segment analyses were conducted using an advanced soil model to investigate the development of side resistance and the soil behavior around a micropile installed in sand and subjected to static axial loading. A series of static pile segment analyses were performed for micropiles and Conventional Drilled Cast-In-Place (CDCIP) piles considering effects of pile installation, relative density of sand and pile diameter. Results of analyses were used to determine the effects of pile installation, pile diameter, and relative density of sand on static shear behavior of a micropile and changes in effective stresses and volumetric strains in the soil adjacent to the interface. Relatively high side resistance and stiff t-z response were characteristic features of a micropile compared with CDCIP piles. Results of static numerical pile segment analyses for micropiles were compared and found to exhibit good agreement with pile loading tests and design methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armour, T., Groneck, P., Keeley, J., and Sharma, S. (2000). Micropile design and construction guidelines implementation manual, FHWASA-97-070, Federal Highway Administration.

    Google Scholar 

  • Boulon, M. (1988). “Contribution a la mecanique des interface solsstructures: Application au frottement lateral des pieux.” Memorie d’habilitation a Diriger des Recherches, Grenoble, France.

    Google Scholar 

  • Boulon, M. (1989). “Basic features of soil structure interface behavior.” Computers and Geotechnics, Vol.7, No. 2, pp. 115–131, DOI: 10.1016/0266-352X(89)90010-4.

    Article  Google Scholar 

  • Bruce, D. A. and Juran, I. (1997). Drilled and grouted micropiles, Stateof-Practice Review, Vol. III, FHWA-RD-96-017, Federal Highway Administration.

    Google Scholar 

  • Bruce, D. A., Dimillio, A. F., and Juran, I. (1997). “Micropiles: the state of practice. Part I: Characteristics, definitions and classifications.” Ground Improvement, Vol. 1, No. 1, pp. 25–35, DOI: 10.1680/gi.1997.010104.

    Google Scholar 

  • De Mello, V. F. B. (1971). “The standard penetration test.” 4th Pan-American Conference of Soil Mechanics and Foundation Engineering, Vol. 1, Puerto Rico.

  • Ghionna, V. N. and Mortara, G. (2002). “An elastoplastic model for sand-structure interface behavior.” Géotechnique, Vol. 52, No. 1, pp. 41–50, DOI: 10.1680/geot.2002.52.1.41.

    Article  Google Scholar 

  • Hanna, T. H. (1982). Foundations in Tension: Ground Anchors, Trans Tech Publications, Clausthal, Germany.

    Google Scholar 

  • Ichimura, Y., Oshita, T., and Sagara, M. (1999). “Vertical load tests of micropiles reinforced with steel pipe.” Proceedings of Second International Workshop on Micropiles, Yamaguchi Univ., Ube city, Japan.

    Google Scholar 

  • Juran, I., Bruce, D. A., Dimillio, A., and Benslimane, A. (1999). “Micropiles: The state of practice. Part II: design of single micropiles and groups and networks of micropiles.” Ground Improvement, Vol. 3, No. 3, pp. 89–110, DOI: 10.1680/gi.1999.030301.

    Google Scholar 

  • Ladanyi, B. and Foriero, A. (1998). “A numerical solution of cavity expansion problem in sand based directly on experimental stressstrain curves.” Canadian Geotechnical Journal, Vol. 35, No. 4, pp. 541–559, DOI: 10.1139/t98-028.

    Article  Google Scholar 

  • Lee, K. L. (1965). Triaxial compressive strength of saturated sands under seismic loading conditions, PhD Thesis, University of California, Berkeley, California.

    Google Scholar 

  • Lee, K. L. and Seed, H. B. (1967). “Drained strength characteristics of sands.” Journal of Soil Mechanics and Foundation Engineering Division, ASCE, Vol. 93, No. 6, pp. 117–141.

    Google Scholar 

  • Lee, S. (2004). Behavior of a single micropile in sand under cyclic axial loads, PhD Thesis, University of Illinois at Urbana-Champaign, Urbana, Illinois.

    Google Scholar 

  • Lee, S. and Long, J. H. (2008). “Skin friction features of drilled CIP piles in sand from pile segment analysis.” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 32, No. 7, pp. 745–770, DOI: 10.1002/nag.644.

    Article  MATH  Google Scholar 

  • Lehane, B. M., Gaudin, C., and Schneider, J. A. (2005). “Scale effects on tension capacity for rough piles buried in dense sand.” Géotechnique, Vol. 55, No. 10, pp. 709–719, DOI: 10.1680/geot.2005.55.10.709.

    Article  Google Scholar 

  • Li, X. S. and Dafalias, Y. F. (2000). “Dilatancy for cohesionless soils.” Géotechnique, Vo. 50, No. 4, pp. 449–460, DOI: 10.1680/geot.2000.50.4.449.

    Article  Google Scholar 

  • Ling, H. I. and Liu, H. (2003). “Pressure-level dependency and densification behavior of sand through generalized plasticity model.” Journal of Engineering Mechanics, Vol. 129, No. 8, pp. 851–860, DOI: 10.1061/(ASCE)0733-9399(2003)129:8(851)

    Article  Google Scholar 

  • Misra, A., Chen, C.-H., Oberoi, R., and Kleiber, A. (2004). “Simplified analysis method for micropile pullout behavior.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 130, No. 10, pp. 1024–1033, DOI: 10.1061/(ASCE)1090-0241(2004)130:10(1024).

    Article  Google Scholar 

  • O’Neill, M. W. and Reese, L. C. (1999). Drilled Shaft: Construction Procedures and Design Methods, Publication No. FHWA-IF-99-025, U.S. Dept. of Transportation, Federal Highway Administration, Washington, D.C.

    Google Scholar 

  • Pastor, M., Zienkiewicz, O. C., and Chan, A. H. C. (1990). “Generalized plasticity and the modelling of soil behaviour.” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 14, No. 3, pp. 151–190, DOI: 10.1002/nag.1610140302.

    Article  MATH  Google Scholar 

  • Pastor, M., Zienkiewicz, O. C., and Leung, K. H. (1985). “Simple model for transient soil loading in earthquake analysis: II. Non-associative models for sands.” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 9, No. 5, pp. 477–498, DOI: 10.1002/nag.1610090506.

    Article  MATH  Google Scholar 

  • Potts, D. M. and Martins, J. P. (1982). “The shaft resistance of axially loaded piles in clay.” Géotechnique, Vol. 32, No. 4, pp. 369–386, DOI: 10.1680/geot.1982.32.4.369.

    Article  Google Scholar 

  • Randolph, M. F. and Wroth, C. P. (1978). “Analysis of deformation of vertically loaded piles.” Journal of Geotechnical Engineering Division, ASCE, Vol. 104, No. 12, pp. 1465–1488.

    Google Scholar 

  • Sidarta, D.E. (2000). Neural network-based constitutive modeling of granular material, PhD Thesis, University of Illinois at Urbana-Champaign, Urbana, Illinois.

    Google Scholar 

  • Terzaghi, K., Peck, R. B., and Mesri, G. (1996). Soil mechanics in engineering practice, 3rd Ed., John Wiley & Son, Inc., New York.

    Google Scholar 

  • Turner, J. P. and Kulhawy, F. H. (1994). “Physical modeling of drilled shaft side resistance in sand.” Geotechnical Testing Journal, Vol. 17, No. 3, pp. 282–290, DOI: 10.1520/GTJ10103J.

    Article  Google Scholar 

  • Wernick, E. (1978a). “Stresses and strains on the surface of anchors.” Revue Française de Géotechnique, numéro special sur les tyrants d’ancrages, pp. 113–119.

    Google Scholar 

  • Wernick, E. (1978b). “Skin friction of cylindrical anchors in non-cohesive soils.” Symposium on soil reinforcing and stabilizing techniques, Sydney, Australia, pp. 201–219

    Google Scholar 

  • Yu, H. S. (1992). “Expansion of a thick cylinder of soils.” Computers and Geotechnics, Vol. 14, pp. 21–41, DOI: 10.1016/0266-352X(92)90022-L.

    Article  Google Scholar 

  • Yu, H. S. and Houslby, G. T. (1991). “Finite cavity expansion in dilatant soil: Loading analysis.” Géotechnique, Vol. 41, No. 2, pp. 173–183, DOI: 10.1680/geot.1991.41.2.173.

    Article  Google Scholar 

  • Zienkiewicz, O. C., Leung, K. H., and Pastor, M. (1985). “Simple model for transient soil loading in earthquake analysis: I. Basic model and its application.” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 9, No. 5, pp. 453–476, DOI: 10.1002/nag.1610090505.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungjune Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, JS., Lee, S. Static skin friction behavior of a single micropile in sand. KSCE J Civ Eng 20, 1793–1805 (2016). https://doi.org/10.1007/s12205-016-0918-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-016-0918-2

Keywords

Navigation