Skip to main content
Log in

Modeling lane formation in pedestrian counter flow and its effect on capacity

  • Sustainable Urban Transportation System
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

For the development of a sustainable transportation system, a modal shift from automobiles to walking or transit is encouraged. In order to design a more convenient and comfortable walking environment, a sound modeling of pedestrian flow is necessary. Most of the previously developed pedestrian flow models well described the macroscopic features of unidirectional pedestrian flow. However, in pedestrian counter-flow, interactions among conflicting pedestrians are so complicated and existing flow models fall short in explaining some features of pedestrian behaviors. A spontaneous lane formation, which helps to reduce conflicts and increase travel speeds, is a commonly observed feature of a crowded pedestrian flow. This paper develops a social-force based pedestrian model, which can explain the lane formation phenomenon. From the simulation results, it turns out that the ‘following effect’ and ‘evasive effect’ mainly contribute to the lane formation. Higher capacity and travel speed are obtained when pedestrians are more congregated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benekohal, R. F. and Treiterer, J. (1988). “CARSIM: Car-following model for simulation of traffic in normal stop-and-go conditions.” Transportation Research Record, Issue 1194, pp. 99–111, (http://onlinepubs.trb.org/Onlinepubs/trr/1988/1194/1194-011.pdf)

    Google Scholar 

  • Blue, V. J. and Adler, J. L. (1998). “Emergent fundamental pedestrian flows from cellular automata microsimulation.” Transportation Research Record, Issue 1644, pp. 29–36, DOI: 10.3141/1644-04.

    Google Scholar 

  • Blue, V. J. and Adler, J. L. (2001). “Cellular automata microsimulation for modeling bi-directional pedestrian walkways.” Transportation Research B, Vol. 35, No. 3, pp. 293–312, DOI: 10.1016/s0191-2615(99)00052-1.

    Article  Google Scholar 

  • Burstedde, C., Klauck, K., Schadschneider, A., and Zittarz, J., (2001). “Simulation of pedestrian dynamics using a two-dimensional cellular automaton.” Physica A, Vol. 295, Nos. 3-4 pp. 507–525, DOI: 10.1016/s0378-4371(01)00141-8.

    Article  MATH  Google Scholar 

  • Chraibi, M., Seyfreid, A., and Schadschneider, A. (2010). “Generalized centrifugal-force model for pedestrian dynamics.” Physical Review E, Vol. 82, No. 4, 046111, DOI: 10.1103/physreve.82.046111.

    Article  Google Scholar 

  • Couzin, I. D. and Franks, N. R., (2003). “Self-organized lane formation and optimized traffic flow in army ants.” Proceedings of the Royal Society B: Biological Sciences, Vol. 270, No. 1511, pp. 139–146, DOI: 10.1098/rspb.2002.2210.

    Article  Google Scholar 

  • Delhommelle, J. (2005). “Should “lane formation” occur systematically in driven liquids and colloids?.” Physical Review E, Vol. 71, No. 1, pp. 16705, DOI: 10.1103/physreve.71.016705.

    Article  Google Scholar 

  • Flötteröd, G. and Lämmel, G. (2015). “Bidirectional pedestrian fundamental diagram.” Transportation Research Part B, Vol. 71, pp. 194–212, DOI: 10.1016/j.trb.2014.11.001.

    Article  Google Scholar 

  • Gazis, D. C., Herman, R., and Potts, R. B. (1959). “Car-following theory of steady-state traffic flow.” Operations Research, Vol. 7, No. 4, pp. 499–505, DOI: 10.1287/opre.7.4.499.

    Article  MathSciNet  Google Scholar 

  • Greenshields, B. D. (1934). “A study on traffic capacity.” Highway Research Board, Proc., Vol. 1935.

  • Guo, R. and Huang, H. (2012). “Formulation of pedestrian movement in microscopic models with continuous space representation.” Transportation Research C, Vol. 24, pp. 50–61, DOI: 10.1016/j.trc.2012.02.004.

    Article  Google Scholar 

  • Ha, E., Joo, Y., and Jun, C. (2011). “An empirical study on sustainable walkability indices for transit-oriented development by using the analytic network process approach.” International Journal of Urban Sciences, Vol. 15, No. 2, pp. 137–146, DOI: 10.1080/12265934. 2011.615977.

    Article  Google Scholar 

  • Helbing, D. and Molnár, P. (1995). “Social force model for pedestrian dynamics.” Physical Review E, Vol. 51, No. 5, pp. 4282–4286, DOI: 10.1103/physreve.51.4282.

    Article  Google Scholar 

  • Helbing, D., Buzna, L., Johansson, A., and Werner, T. (2005). “Selforganized pedestrian crowd dynamics: Experiments, simulations, and design solutions.” Transportation Science, Vol. 39, No. 1, pp. 1–24, DOI: 10.1287/trsc.1040.0108.

    Article  Google Scholar 

  • Helbing, D., Farkas, I., and Vicsek, T. (2000). “Simulating dynamical features of escape panic.” Nature, Vol. 407, No. 6803, pp. 487–490, DOI: 10.1038/35035023.

    Article  Google Scholar 

  • Henao, A., Piatkowski, D., Luckey, K., Nordback, K., Marshall, W., and Krizek, K. (2015). “Sustainable transportation infrastructure investment and mode share changes: A 20-year background of Boulder, Colorado.” Transport Policy, Vol. 37, pp. 64–71, DOI: 10.1016/j.tranpol. 2014.09.012.

    Article  Google Scholar 

  • Henderson, L. F. (1971). “The statistics of crowd fluids.” Nature, Vol. 229, No. 5284, pp. 381–383, DOI: 10.1038/229381a0.

    Article  Google Scholar 

  • Hoogendoorn, S. P. (2003). “Walker behaviour modelling by differential games.” In Interface and Transport Dynamics. Springer Berlin Heidelberg. pp. 275–294, DOI: 10.1007/978-3-662-07969-0_27.

    Chapter  Google Scholar 

  • Isobe, M., Adachi, T., and Nagatani, T. (2004). “Experiment and simulation of pedestrian counter flow.” Physics A, Vol. 336, No. 3, pp. 638–650, DOI: 10.1016/j.physa.2004.01.043.

    Article  Google Scholar 

  • Johansson, A. and Helbing, D. (2008). “Analysis of empirical trajectory data of pedestrians.” Handbook of Pedestrian and Evacuation Dynamics, Part I, pp. 203–214, DOI: 10.1007/978-3-642-04504-2_15.

    Google Scholar 

  • Kim, S. and Ulfarsson, G. F. (2008). “Curbing automobile use for sustainable transportation: analysis of mode choice on short home-based trips.” Transportation, Vol. 35, No. 6, pp. 723–737, DOI: 10.1007/s11116-008-9177-5.

    Article  Google Scholar 

  • Kim, S., Choi, J., and Kim, S. (2013). “Roadside walking environments and major factors affecting pedestrian level of service.” International Journal of Urban Sciences, Vol. 17, No. 3, pp. 304–315, DOI: 10.1080/12265934.2013.825422.

    Article  Google Scholar 

  • Kim, S., Choi, J., Kim, S., and Tay, R. (2014). “Personal space, evasive movement and pedestrian level of service.” Journal of Advanced Transportation, Vol. 48, No. 6, pp. 673–684, DOI: 10.1002/atr.1223.

    Article  Google Scholar 

  • Ko, M. S., Kim, T. W., and Sohn, K. M. (2013). “Calibrating a socialforce-based pedestrian walking model based on maximum likelihood estimation.” Transportation, Vol. 40, No. 1, pp. 91–107, DOI: 10.1007/s11116-012-9411-z.

    Article  Google Scholar 

  • Krauss, S., Wagner, P., and Gawron, C. (1997). “Metastable states in a microscopic model of traffic flow.” Physical Review E, Vol. 55, No. 5, pp. 5597–5602, DOI: 10.1103/physreve.55.5597.

    Article  Google Scholar 

  • Lam, W., Lee, J., and Cheung, C. (2002). “A study of the bi-directional pedestrian flow characteristics at Hong-Kong signalized crosswalk facilities.” Transportation, Vol. 29, No. 2, pp. 169–192,DOI: 10.1023/a:1014226416702.

    Article  Google Scholar 

  • Lee, H. S. and Park, E. Y. (2014). “Comparing the environment for elderly pedestrians among different-sized cities of Gyeonggi province in Korea.” International Journal of Urban Sciences, Vol. 18, No. 1, pp. 76–89, DOI: 10.1080/12265934.2013.863449.

    Article  Google Scholar 

  • Lighthill, M. J. and Whitham, J. B. (1955). “On kinematic waves II; A theory of traffic flow on long crowd roads.” Proceedings of the Royal Society A, Vol. 229, No. 1178, pp. 317–345, DOI: 10.1098/rspa.1955.0089.

    Article  MathSciNet  MATH  Google Scholar 

  • Ministry of Land, Transport and Maritime Affairs, Korea (2013). “Korean highway capacity manual.” pp. 618 (in Korean).

    Google Scholar 

  • Muramatsu, M., Irie, T., and Nagatani, T. (1999). “Jamming transition in pedestrian counter flow.” Physica A, Vol. 267, No. 3, pp. 487–498, DOI: 10.1016/s0378-4371(99)00018-7.

    Article  Google Scholar 

  • Nagel, K. and Schreckenberg, M. (1992). “A cellular automaton model for freeway traffic.” Journal of Physics I France, Vol. 2, No. 12, pp. 2221–2229, DOI: 10.1051/jp1:1992277.

    Article  Google Scholar 

  • Newell, G. F. (2002). “A simplified car-following theory: A lower order model.” Transportation Research B, Vol. 36, No. 3, pp. 195–205, DOI: 10.1016/s0191-2615(00)00044-8.

    Article  MathSciNet  Google Scholar 

  • Nowak, S. and Schadschneider, A. (2012). “Quantitative analysis of pedestrian counterflow in a cellular automaton model.” Physical Review E, Vol. 85, No. 6, pp. 066128, DOI: 10.1103/physreve.85.066128.

    Article  Google Scholar 

  • Okazaki, S. (1979). “A study of pedestrian movement in architectural spaces, Part I: pedestrian movement by the application of magnetic models.” Trans. A. I. J., Vol. 283, pp. 111–119.

    Google Scholar 

  • Parisi, D. R., Gilman, M., and Moldovan, H. (2009). “A modification of the social force model can reproduce experimental data of pedestrian flows in normal conditions.” Physics A, Vol. 388, No. 17, pp. 3600–3608, DOI: 10.1016/j.physa.2009.05.027.

    Article  Google Scholar 

  • Piatkowski, D., Krizek, K., and Handy, S. (2015). “Accounting for the short term substitution effects of walking and cycling in sustainable transportation” Travel Behaviour and Society, Vol. 2, No. 1, pp. 32–41, DOI: 10.1016/j.tbs.2014.07.004.

    Article  Google Scholar 

  • Shuaib, M., Alia, O., and Zainuddin, Z. (2013). “Incorporating prediction factor into the investigation capability in the social force model: application on avoiding grouped pedestrians.” Applied Mathematics & Information Sciences, Vol. 7, No. 1, pp. 323–331, DOI: 10.12785/amis/070141.

    Article  MathSciNet  Google Scholar 

  • Tajima, Y., Takimoto, K., and Nagatani. T. (2002). “Pattern formation and jamming transition in pedestrian counter flow.” Physica A, Vol. 313, No. 3, pp. 709–723, DOI: 10.1016/s0378-4371(02)00965-2.

    Article  MathSciNet  MATH  Google Scholar 

  • Takimoto, K., Tajima, Y., and Nagatani, T. (2002). “Effect of partition line on jamming transition in pedestrian counter flow.” Physica A, Vol. 308, No. 1, pp. 460–470, DOI: 10.1016/s0378-4371(02)00550-2.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, J., Klingsch, W., Schadschneider, A., and Seyfried, A. (2012). “Ordering in bidirectional pedestrian flows and its influence on the fundamental diagram.” Journal of Statistical Mechanics, Vol. 2012, No. 2, pp. 02002, DOI: 10.1088/1742-5468/2012/02/p02002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taewan Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Kim, T., Chung, JH. et al. Modeling lane formation in pedestrian counter flow and its effect on capacity. KSCE J Civ Eng 20, 1099–1108 (2016). https://doi.org/10.1007/s12205-016-0741-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-016-0741-9

Keywords

Navigation