Skip to main content
Log in

Field tests and finite element modeling of a Prestressed Concrete Pipe pile-composite foundation

  • Geotechnical Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

The Prestressed Concrete Pipe (PCP) pile-composite foundation was initially employed in the foundation of a culvert in the ancient Yellow River of China. To analyze the reinforcement effect of the foundation, a composite foundation composed of PCP piles was investigated with field tests and numerical simulations. A static load test was conducted to investigate the stress and deformation of the PCP pile-composite foundation, and a finite element model under three-dimensional (3D) axisymmetric conditions was developed to simulate the stress and deformation of the foundation. The Finite Element (FE) model used a nonlinear constitutive model for the soil, cushion and pile-soil interface. The results of the numerical simulations correspond with the load sharing, stress and displacement results of the static load test and indicate that the soil stress is primarily compressive. The cushion reduces the difference in settlement between the middle region and the side region of the bearing plate and increases the bearing capacity of the PCP pile-composite foundation. The stress of the pile significantly varies in the upper 1 m. The pile-soil load-sharing ratio increases with an increase in external load. This paper is expected to be useful for scientific research and efficient applications of PCP pilecomposite foundations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali Jawaid, S. and Madhav, M. (2013). “Analysis of axially loaded short rigid composite caisson foundation based on continuum approach.” Int. J. Geomech., Vol. 13, No. 5, pp. 636–644, DOI: 10.1061/(ASCE)GM.1943-5622.0000185.

    Article  Google Scholar 

  • Banerjee, S., Stanton, J., and Hawkins, N. (1987). “Seismic performance of precast prestressed concrete piles.” J. Struct. Eng., Vol. 113, No. 2, pp. 381–396, DOI: 10.1061/(ASCE)0733-9445(1987)113:2(381).

    Article  Google Scholar 

  • Briaud, J. and Tucker, L. (1984). “Piles in sand: A method including residual stresses.” J. Geotech. Engrg., Vol. 110, No. 11, pp. 1666–1680, DOI: 10.1061/(ASCE)0733-9410(1984)110:11(1666).

    Article  Google Scholar 

  • Briaud, J. and Tucker, L. (1988). “Measured and predicted axial response of 98 piles.” J. Geotech. Engrg., Vol. 114, No. 9, pp. 984–1001, DOI: 10.1061/(ASCE)0733-9410(1988)114:9(984).

    Article  Google Scholar 

  • Budek, A. and Benzoni, G. (2009). “Obtaining ductile performance from precast, prestressed concrete piles.” PCI J., Vol. 54, No. 3, pp. 64–80, DOI: 10.14359/51663183.

    Article  Google Scholar 

  • Desai, C. S. (1974). “Numerical design-analysis for piles in sands.” J. Geotech. Engrg. Div., Vol. 100, No. 6, pp. 613–635.

    Google Scholar 

  • Ellison, R. D., D'Appolonia, E., and Thiers, G. R. (1971). “Loaddeformation mechanism for bored piles.” J. Soil Mechanism and Foundations Div., Vol. 97, No. 4, pp. 661–678.

    Google Scholar 

  • Haldar, S. and Babu, G. (2010). “Failure mechanisms of pile foundations in liquefiable soil: Parametric study.” Int. J. Geomech., Vol. 10, No. 2, pp. 74–84, DOI: 10.1061/(ASCE)1532-3641(2010)10:2(74).

    Article  Google Scholar 

  • Hooper, J. A. (1973). “Observations on the behavior of a piled-raft foundation on london clay.” Proc. Inst. Civ. Eng., Vol. 55, No. 4, pp. 855–877.

    Article  Google Scholar 

  • Liu, J., Zhang, Z., Zhao, Y., and Lin, C. (2011). “Statistical research on performance of prestressed concrete pipe piles.” 2011 Int. Conf. on Electric Technology and Civil Engineering, IEEE, Lushan, pp. 711–714, DOI: 10.1109/ICETCE.2011.5774240.

    Google Scholar 

  • Lu, M. M., Xie, K. H., Wang, S. Y., and Li, C. X. (2013). “Analytical solution for the consolidation of a composite foundation reinforced by an impervious column with an arbitrary stress increment.” Int. J. Geomech., Vol. 13, No. 1, pp. 33–40, DOI: 10.1061/(ASCE)GM.1943-5622.0000176.

    Article  Google Scholar 

  • Ottaviani, M. (1975). “Three-dimensional finite element analysis of vertically loaded pile groups.” Géotechnique, Vol. 25, No. 2, pp. 159–174, DOI: 10.1680/geot.1975.25.2.159.

    Article  Google Scholar 

  • Rausche, F., Goble, G., and Likins, G., Jr. (1985). “Dynamic determination of pile capacity.” J. Geotech. Engrg., Vol. 111, No. 3, pp. 367–1383, DOI: 10.1061/(ASCE)0733-9410(1985)111:3(367).

    Article  Google Scholar 

  • Salciarini, D., Ronchi, F., Cattoni, E., and Tamagnini, C. (2013). “Thermomechanical effects induced by energy piles operation in a small piled raft.” Int. J. Geomech., 04014042, pp. 1–14, DOI: 10.1061/(ASCE)GM.1943-5622.0000375.

    Google Scholar 

  • Su, H. Z., Hu, J., and Wen, Z. P. (2013a). “Optimization of reinforcement strategies for dangerous dams considering time-average system failure probability and benefit–cost ratio using a life quality index.” Nat. Hazards, Vol. 65, No. 1, pp. 799–817, DOI: 10.1007/s11069-012-0394-z.

    Article  Google Scholar 

  • Su, H. Z., Hu, J., Li, J. Y., and Wu, Z. R. (2013b). “Deep stability evaluation of high-gravity dam under combining action of powerhouse and dam.” Int. J. Geomech., Vol. 13, No. 2, pp. 257–272, DOI: 10.1061/(ASCE)GM.1943-5622.0000206.

    Article  Google Scholar 

  • Tak Kim, B., Kim, N., Jin Lee, W., and Su Kim, Y. (2004). “Experimental load–transfer curves of laterally loaded piles in nak-dong river sand.” J. Geotech. Geoenviron. Eng., Vol. 130, No. 4, pp. 416–425, DOI: 10.1061/(ASCE)1090-0241(2004)130:4(416).

    Article  Google Scholar 

  • Wakai, A., Gose, Sh., and Ugai, K. (1999). “3D-elasto-plastic-finite element analyses of pile foundations subjected to lateral loading.” Soils Found., Vol. 39, No. 1, pp. 97–111, DOI: http://dx.doi.org/10.3208/sandf.39.97.

    Article  Google Scholar 

  • Wang, G. C., Chen, L. Z., and Song, C. Y. (2006). “Finite-infinite element for dynamic analysis of axisymmetrically saturated composite foundations.” Int. J. Numer. Meth. Eng., Vol. 67, No. 7, pp. 916–932, DOI: 10.1002/nme.1654.

    Article  MATH  Google Scholar 

  • Wang, W., Zhou, A., and Ling, H. (2009). “Field tests on composite deep-mixing-cement pile foundation under expressway embankment.” Slope Stability, Retaining Walls, and Foundations, GeoHunan International Conference 2009, Changsha, Hunan, China, Vol. 2009, No. NA, pp. 62–67, DOI: 10.1061/41049(356)10.

    Article  MATH  Google Scholar 

  • Water Conservancy Survey and Design Institute of Yancheng City (2011). “Pipe pile composite foundation design report of ancient Yellow River water conservancy project in Huaian city.”

    Google Scholar 

  • Wu, B., Broms, B., and Choa, V. (1998). “Design of laterally loaded piles in cohesive soils using p-y curves.” Soils Found., Vol. 38, No. 2, pp. 17–26, DOI: http://dx.doi.org/10.3208/sandf.38.2_17.

    Article  Google Scholar 

  • Yuan, M., Ding, J. H., Zhang, P. X., and Quan, X. J. (2013). “The settlement computation of composite foundation of different typedpile based on the load test.” Applied Mechanics and Materials, pp. 490–491, pp. 1706–1711, DOI: 10.4028/www.scientific.net/AMM.490-491.1706.

    Google Scholar 

  • Zhang, L., Zhao, M. H., and He, W. (2007). “Working mechanism of two-direction reinforced composite foundation.” J. Cent. South. Univ. T., Vol. 14, No. 4, pp. 589–594, DOI: 10.3208/sandf.38.2_17.

    Article  Google Scholar 

  • Zheng, J. J., Abusharar, S. W., and Wang, X. Z. (2008). “Three-dimensional nonlinear finite element modeling of composite foundation formed by CFG-lime piles.” Comput. Geotech., Vol. 35, No. 4, pp. 637–643, DOI: 10.1016/j.compgeo.2007.10.002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Liu, S. Field tests and finite element modeling of a Prestressed Concrete Pipe pile-composite foundation. KSCE J Civ Eng 19, 2067–2074 (2015). https://doi.org/10.1007/s12205-015-0549-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-015-0549-z

Keywords

Navigation