Skip to main content
Log in

A comparison of Artificial Neural Networks (ANN) and Local Linear Regression (LLR) techniques for predicting monthly reservoir levels

  • Water Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

Storage dams play a very important role in irrigation especially during lean periods. For proper regulation one should make sure the availability of water according to needs and requirements. Normally regression techniques are used for the estimation of a reservoir level but this study was aimed to account for a non-linear change and variability of natural data by using Gamma Test, for input combination and data length selection, in conjunction with Artificial Neural Networking (ANN) and Local Linear Regression (LLR) based models for monthly reservoir level prediction. Results from both training and validation phase clearly indicate the usefulness of both ANN and LLR based prediction techniques for Water Management in general and reservoir level forecasting in particular, with LLR outperforming the ANN based model with relatively higher values of Nash-Sutcliffe model efficiency coefficnet (R2) and lower values of Root Mean Squared Error (RMSE) and Mean Biased Error (MBE). The study also demonstrates how Gamma test can be effectively used to determine the ideal input combination for data driven model development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agalbjorn, S., Koncar, N., and Jones, A. J. (1997). “A note on the gamma test.” Neural Computing and Applications, Vol. 5, No. 3, pp. 131–133, DOI: 10.1007/BF01413858.

    Article  Google Scholar 

  • Ahmadi, A., Han, D., Karamouz, M., and Remesan, R. (2009). “Input data selection for solar radiation estimation.” Hydrol Processes, Vol. 23, No. 19, pp. 2754–2764, DOI: 10.1002/hyp.7372.

    Article  Google Scholar 

  • Alqudah, A., Chandrasekar, V., and Le, M. (2013). “Investigating rainfall estimation from radar measurements using neural networks.” Nat. Hazards Earth Syst. Sci., No. 13, pp. 535–544, DOI: 10.5194/nhess-13-535-2013.

    Google Scholar 

  • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000a). “Artificial neural networks in hydrology I: Preliminary concepts.” J. Hydrol. Engng., ASCE, 5, No. 2, pp. 115–123, DOI: 10.1061/(ASCE)1084-0699(2000).

    Article  Google Scholar 

  • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000b). “Artificial neural networks in hydrology II: Hydrologic applications.”. J. Hydrol. Engng., ASCE, Vol. 5, No. 2, pp. 124–137, DOI: 10.1061/(ASCE)1084-0699(2000)5:2(124).

    Article  Google Scholar 

  • Chuzhanova, N. A., Jones, A. J., and Margetts, S. (1998). “Feature selection for genetic sequence classification.” Bioinformatics, Vol. 14, No. 2, pp. 139–143, DOI: 10.1093/bioinformatics/14.2.139.

    Article  Google Scholar 

  • Durrant, P. J. (2001). winGamma: A non-linear data analysis and modelling tool with applications to flood prediction, PhD Thesis, Department of Computer Science, Cardiff University, Wales, UK.

    Google Scholar 

  • Evans, D. and Jones, A. J. (2002). “A proof of the gamma test.” Proc. Roy. Soc. Series A, Vol. 458, pp. 2759–2799, DOI: 10.1098/rspa.2002.1010.

    Article  MathSciNet  MATH  Google Scholar 

  • Güldal, V. and Tongal, H. (2010). “Comparison of recurrent neural network, adaptive neuro-fuzzy inference system and stochastic models in e irdir lake level forecasting.” Water Resource Management, Vol. 24, No. 1, pp. 105–128, DOI: 10.1007/s11269-009-9439-9.

    Article  Google Scholar 

  • Han, D., Chan, L., and Zhu, N. (2007). “Flood forecasting using Support Vector Machines.” Journal of Hydroinformatics, Vol. 9, No. 4, pp. 267–276, 10.2166/hydro.2007.027.

    Article  Google Scholar 

  • Han, D., Cluckie, I. D., Karbassioun, D., Lawry, J., and Krauskopf, B. (2002). “River flow modelling using fuzzy decision trees.” Water Resources Management, Vol. 16, No. 6, pp. 431–445, DOI: 10.1023/A:1022251422280.

    Article  Google Scholar 

  • Hasebe, M. and Nagayama, Y. (2002). “Reservoir operation using the neural network and fuzzy systems for dam control and operation support.” Advances in Engineering Software, Vol. 33, No. 5, pp. 245–260, DOI: 10.1016/S0965-9978(02)00015-7.

    Article  MATH  Google Scholar 

  • Hassan, M., Shamim, M. A., Hashmi, H. N., Ashiq, S. Z., Ahmed, I., Pasha, G. A., Naeem, U. A., Ghumman, A. R., and Han, D. (2014). “Predicting streamflows to a multipurpose reservoir using artificial neural networks and regression techniques.” Earth Science Informatics (In Press), DOI: 10.1007/s12145-014-0161-7.

    Google Scholar 

  • Ishak, A. M., Remesan, R., Srivastava, P. K., Islam, T., and Han, D. (2013). “Error correction modelling of wind speed through hydrometeorological parameters and mesoscale model: A Hybrid approach.” Water Resources Management, Vol. 27, No. 1, pp. 1–23, DOI: 10.1007/s11269-012-0130-1.

    Article  Google Scholar 

  • Jain, S. K., Das, A., and Srivastava, D. K. (1999). “Application of ANN for reservoir inflow prediction and operation.” Journal of Water Resource Planning and Management, Vol. 125, No. 5, pp. 263–271, DOI: 10.1061/(ASCE)0733-9496(1999)125:5(263).

    Article  Google Scholar 

  • Jajarmizadeh, M., Lafdani, E. K., Harun, S., and Ahmadi, S. (2014). “Application of SVM and SWAT models for monthly Streamflow prediction, a case study in south of Iran.” KSCE Journal of Civil Engineering (in press), DOI: 10.1007/s12205-014-0060-y.

    Google Scholar 

  • Jones, A. J. (2004). “New tools in non-linear modelling and prediction.” Computational Management, Science 1 pp. 109–149, 10.1007/s10287-003-0006-1.

    Google Scholar 

  • Jones, A. J., Tsui, A., and de Oliveira, A. G. (2002). “Neural models of arbitrary chaotic systems: Construction and the role of time delayed feedback in control and synchronization.” Complexity International, 9: 1–9. Paper ID: tsui01, URL: http://www.complexity.org.au/vol09/tsui01/.

    MathSciNet  Google Scholar 

  • Kemp, S. E. (2006). Gamma test analysis tools for non-linear time series, PhD Thesis, Department of Computing and Mathematical Sciences University of Glamorgan UK.

    Google Scholar 

  • Kisi, O. and Cimen, M. (2012). “Precipitation forecasting by using wavelet-support vector machine conjunction model.” Eng. Appl. of Artificial Intelligence, Vol. 25, No. 4, pp. 783–792, DOI: 10.1016/j.engappai.2011.11.003.

    Article  Google Scholar 

  • Konèar, N. (1997). Optimisation methodologies for direct inverse neurocontrol, PhD Thesis, Department of Computing, Imperial College of Science, Technology and Medicine, University of London.

    Google Scholar 

  • Lallahem, S. and Mania, J. (2003). “Evaluation and forecasting of daily groundwater outflow in a small chalky watershed.” Hydrological Processes, Vol. 17, No. 8, pp. 1561–1577, DOI: 10.1002/hyp.1199.

    Article  Google Scholar 

  • Matheussen, B. V. and Thorolfsson, S. T. (1999). “Simulation errors due to insucient temporal resolution in urban snowmelt models.” in I. Jolie & J. Ball, eds, ‘The 8th International Conference on Urban Storm Drainage (8ICUSD)’, Vol. 4, pp. 2107–2114, 30 August- 3 September, Sydney, Australia.

    Google Scholar 

  • McCulloch, W. S. and Pitts, W. (1943). “A logical calculus of the ideas imminent in nervous activity.”. Bulletin of Mathematical Biophysics, Vol. 5, pp. 115–133, DOI: 10.1007/BF02478259.

    Article  MathSciNet  MATH  Google Scholar 

  • Minsky, M. and Papert, S. (1969). “Perceptrons.” MIT Press: Cambridge, MA.

    Google Scholar 

  • Penrose, R. (1955). “A generalized inverse for matrices.” Proceedings of the Cambridge Philosophical Society, Vol. 51, pp. 406–413, DOI: 10.1017/s0305004100030401.

    Article  MathSciNet  MATH  Google Scholar 

  • Penrose, R. (1956). “On best approximate solution of linear matrix equations.” Proceedings of the Cambridge Philosophical Society, Vol. 52, pp. 17–19, DOI: 10.1017/S0305004100030929.

    Article  MathSciNet  MATH  Google Scholar 

  • Raman, H. and Chandramouli, V. (1996). “Deriving a general Operating Policy for reservoir using Neural Network.” Journal of Water Resources Planning and Management, ASCE, Vol. 122, No. 5, pp. 342–347, DOI: 10.1061/(ASCE)0733-9496(1996)122:5(342).

    Article  Google Scholar 

  • Remesan, R., Shamim, M. A., Ahmadi, A., and Han, D. (2010). “Effect of data time interval on real-time flood forecasting.”. Journal of Hydroinformatics, Vol. 12, No. 4, pp. 396–407, DOI: 10.2166/hydro.2010.063.

    Article  Google Scholar 

  • Remesan, R., Shamim, M. A., and Han, D. (2008a). “Model data selection using gamma test for daily solar radiation estimation.” Hydrological Processes, Vol. 22, No. 21, pp. 4301–4309, DOI: 10.1002/hyp.7044.

    Article  Google Scholar 

  • Remesan, R., Shamim, M. A., Han, D., and Mathew, J. (2008b). “ANFIS and NNARX based rainfall runoff modelling.” IEEE International Conference on Systems, Man and Cybernetics, Singapore

    Google Scholar 

  • Remesan, R., Shamim, M. A., Han, D., and Mathew, J. (2009). “Runoff prediction using an integrated hybrid modelling scheme.” Journal of Hydrology, Vol. 372, No. 6, pp. 48–60, DOI: 10.1016/j.jhydrol.2009.03.034.

    Article  Google Scholar 

  • Rogers, L. L. and Dowla, F. U. (1994). “Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling.” Water Resources Research, Vol. 30, No. 2, pp. 457–481, DOI: 10.1029/93WR01494.

    Article  Google Scholar 

  • Rosenblatt, F. (1962). Principles of neurodynamics: Perceptrons and the theory of brain mechanics, Spartan

    Google Scholar 

  • Shamim, M. A., Bray, M., Remesan, R., and Han, D. (2014). “A hybrid modeling approach for assessing solar radiation.” Theoretical and Applied Climatology (in press) DOI: 10.1007/s00704-014-1301-1.

    Google Scholar 

  • Shamim, M. A., Ghumman, A. R., and Ghani, U. (2004). “Forecasting groundwater contamination using artificial neural networks.” International Conference on Water Resources and Arid Environments, Riyadh Saudi Arabia.

    Google Scholar 

  • Shamim, M. A., Remesan, R., Han, D., and Ghumman, A. R. (2010). “Solar radiation estimation in ungauged catchments.” Proceedings of ICE-Water Management, Vol. 163, No. 7, pp. 349–359, DOI: 10.1680/wama.2010.163.7.349.

    Article  Google Scholar 

  • Srivastava, P. K., Han, D., Rico-Ramiraz, M. A., Bray, M., and Islam, T. (2012). “Selection of classification techniques for land use/land cover change investigation.” Advances in Space Research, Vol. 50, No. 9, pp. 1250–1265, DOI: 10.1016/j.asr.2012.06.032.

    Article  Google Scholar 

  • Tayfur, G. and Guldal, V. (2006). “Artificial neural networks for estimating daily total suspended sediment in natural streams.” Hydrology Research, Vol. 37, pp. 69–79, DOI: 10.2166/nh.2005.031.

    Google Scholar 

  • Tokar, A. S. and Markus, M. (2000). “Precipitation-runoff modelling using artificial neural networks and conceptual models.” Journal of Hydrologic Engineering, ASCE, Vol. 5, pp. 156–161, DOI: 10.1061/(ASCE)1084-0699(2000)5:2(156)).

    Article  Google Scholar 

  • Trigo, R. M. and Palutikof, J. P. (1999). “Simulation of daily temperatures for climate change scenarios over Portugal: A neural network approach.”. Climate Research, Vol. 13, pp. 45–59, DOI: 10.3354/cr013045.

    Article  Google Scholar 

  • Tsui, A. P. M. (1999). Smooth data modelling and stimulus-response via stabilisation of neural chaos, PhD Thesis, Department of Computing, Imperial College of Science, Technology and Medicine, University of London.

    Google Scholar 

  • Tsui, A. P. M., Jones, A. J., and de Oliveira, A. G. (2002). “The con struction of smooth models using irregular embeddings determined by a gamma test analysis.” Neural Computing and Applications, Vol. 10, No. 4, pp. 318–329, DOI: 10.1007/s005210200004.

    Article  MATH  Google Scholar 

  • United Nations Edicational Scientific and Cultural Organisation (UNESCO) (2003), “World Water Development Report, 1st edition, Water for People, Water for Life.”

    Google Scholar 

  • Water and Power Development Authority, WAPDA (2010). “Kalabagh Dam Project report.” pp. 12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ali Shamim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamim, M.A., Hassan, M., Ahmad, S. et al. A comparison of Artificial Neural Networks (ANN) and Local Linear Regression (LLR) techniques for predicting monthly reservoir levels. KSCE J Civ Eng 20, 971–977 (2016). https://doi.org/10.1007/s12205-015-0298-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-015-0298-z

Keywords

Navigation