Skip to main content
Log in

Coal bottom ash in field of civil engineering: A review of advanced applications and environmental considerations

  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

The utilization of coal bottom ash in civil engineering is one of the most promising options to reduce, or possibly eliminate, the environmental and social problems related to the disposal of bottom ash. This study reviews the traditional and state-of-the-art utilization technologies of bottom ash in the field of civil engineering. It covers the production and characteristics of bottom ash, case studies of its conventional applications as a simple replacement of natural resources and advanced applications for special purposes, and environmental considerations for both raw bottom ash and its applications. This review is intended to stimulate and promote the effective recycling of coal bottom ash in the civil engineering field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AASHTO T 304 (2011). Uncompacted void content of fine aggregate.

    Google Scholar 

  • American Coal Ash Association (ACAA) (2004). Boiler slag, American Coal Ash Association, Aurora CO, Resource Bulletin 23.

    Google Scholar 

  • American Coal Ash Association (ACAA) (2010). 2009 Coal Combustion Product (CCP) production & use survey report.

    Google Scholar 

  • American Concrete Institute (ACI) 229R. (1999). Controlled low strength materials, American Concrete Institute, Farmington Hills, MI.

    Google Scholar 

  • Andrade, L. B., Rocha, J. C., and Cheriaf, M. (2007). “Evaluation of concrete incorporating bottom ash as a natural aggregates replacement.” Waste Management, Vol. 27, Issue 9, pp. 1190–1199, DOI: 10.1016/j.wasman.2006.07.020.

    Article  Google Scholar 

  • Andrade, L. B. and Rocha, J. C., and Cheriaf, M. (2009). “Influence of coal bottom ash as fine aggregate on fresh properties of concrete.” Construction and Building Materials, Vol. 23, Issue 2, pp. 609–614, DOI: 10.1016/j.conbuildmat.2008.05.003.

    Article  Google Scholar 

  • ASTM C1252-06 (2006). Standard test methods for uncompacted void content of fine aggregate (as influenced by particle shape, surface texture, and grading).

    Google Scholar 

  • ASTM E2277-03 (2003). Standard guide for design and construction of coal ash structural fills.

    Google Scholar 

  • Baba, A. (2002). “Assessment of radioactive contaminants in by-products from Yatagan (Mugla, Turkey) coal-fired power plant.” Environmental Geology, Vol. 41, No. 8, pp. 916–921. DOI: 10.1007/s00254-001-0469-8.

    Article  Google Scholar 

  • Bai, Y. and Basheer, P. A. M. (2003). “Influence of furnace bottom ash on properties of concrete.” Proceedings of the Institution of Civil Engineers: Structures & Buildings, Vol. 156, Issue 1, pp. 85–92, DOI: 10.1680/stbu.2003.156.1.85.

    Google Scholar 

  • Bai Y., Darcy F., and Basheer, P. A. M. (2005). “Strength and drying shrinkage properties of concrete containing furnace bottom ash as fine aggregate.” Construction and Building Materials, Vol. 19, Issue 9, pp. 691–697, DOI: 10.1016/j.conbuildmat.2005.02.021.

    Article  Google Scholar 

  • Bakoshi T., Kohno K., Kawasaki S., and Yamaji, N. (1998). “Strength and durability of concrete using bottom ash as replacement for fine aggregate.” International Concrete Research & Information Portal, Vol. 179, pp. 159–172, DOI: 10.1016/j.conbuildmat.2005.02.02.

    Google Scholar 

  • Bartoòová L., Klika Z., and Spears, D. A. (2007). “Characterization of unburned carbon from ash after bituminous coal and lignite combustion in CFBs.” Fuel, Vol. 86, Issue 3, pp. 455–463, DOI: 10.1016/j.fuel.2006.07.024.

    Article  Google Scholar 

  • Bin-Shafique, M. S., Benson, C. H., and Edil, T. B. (2003). Leaching of heavy metals from fly ash stabilized soils used in highway pavements, Final Report to Combustion Byproducts Recycling Consortium, West Virginia University.

    Google Scholar 

  • Canpolat F., Yilmaz, K., Kose, M. M., Sumer M., and Yurdusev, M. A. (2004). “Use of zeolite, coal bottom ash and fly ash as replacement materials in cement production.” Cement and Concrete Research, Vol. 34, Issue 5, pp. 731–735, DOI: 10.1016/S0008-8846(03)00063-2.

    Article  Google Scholar 

  • Carpenter, A. C., Gardner, K. H., Fopiano J., Benson, C. H., and Edil, T. B. (2007). “Life cycle based risk assessment of recycled materials in roadway construction.” Waste Management, Vol. 27, Issue 10, pp. 1458–1464, DOI: 10.1016/j.wasman.2007.03.007.

    Article  Google Scholar 

  • Chen Y., Aviad T., Migdal O., and Dick, W. A. (2005). The use of bottom-ash coal-cinder as a component of growing media, Workshop on Environmental and Health Aspects of Coal Ash Utilization, Tel-Aviv, Israel.

    Google Scholar 

  • Cheriaf M., Cavalcante Rocha J., and Péra, J. (1999). “Pozzolanic properties of pulverized coal combustion bottom ash.” Cement and Concrete Research, Vol. 29, Issue 9, pp. 1387–1391, DOI: 10.1016/S0008-8846(99)00098-8.

    Article  Google Scholar 

  • Chia, K. S. and Zhang, M. H. (2007). “Workability of air-entrained lightweight concrete from rheology perspective.” Magazine of Concrete Research, Vol. 59, Issue 5, pp. 367–375, DOI: 10.1680/macr.2007.59.5.367.

    Article  Google Scholar 

  • Chindaprasirt P., Jaturapitakkul C., Chalee W., and Rattanasak, U. (2009). “Comparative study on the characteristics of fly ash and bottom ash geopolymers.” Waste Management, Vol. 29, Issue 2, pp. 539–543, DOI: 10.1016/j.wasman.2008.06.023.

    Article  Google Scholar 

  • Churchill, E. V. and Amirkhanian, S. N. (1999). “Coal ash utilization in asphalt concrete mixtures.” Journal of Materials in Civil Engineering, Vol. 11, Issue 4, pp. 295–301, DOI: 10.1061/(ASCE)0899-1561(1999)11:4(295).

    Article  Google Scholar 

  • Cockrell, C. F., Shafer, H.E., and Leonard, J. W. (1970). “New or undeveloped methods for producing and utilizing coal ash.” Proceedings of the Second International Ash Utilization Symposium, Information Circular No. 8488. Washington DC, U.S. Bureau of Mines.

    Google Scholar 

  • Del Mar, W.A., Burrell, R. W., and Bauer, C. A. (1960). Soil types: Identification and physical properties. II: Soil thermal characteristicsin relation to underground power cables, AIEE Committee Rep., American Institute of Electrical Engineers, New York, pp. 795–803.

    Google Scholar 

  • Dinçer, A. R., Güne Y., and Karakaya, N. (2007a). “Coal-Based Bottom Ash (CBBA) waste material as adsorbent for removal of textile dyestuffs from aqueous solution.” Journal of Hazardous Materials, Vol. 141, Issue 3, pp. 529–535, DOI: 10.1016/j.jhazmat.2006.07.064.

    Article  Google Scholar 

  • Dinçer, A. R., Güne Y., Karakaya N., and Güne, E. (2007b). “Comparison of activated carbon and bottom ash for removal of reactive dye from aqueous solution.” Bioresource Technology, Vol. 98, Issue 4, pp. 834–839, DOI: 10.1016/j.biortech.2006.03.009.

    Article  Google Scholar 

  • Doh, Y. G., Kwon, H. D., and Lee, S. (2006). “A study of the bottom ash as environmentally grouting materials.” Journal of the Korean Geotechnical Society, Vol. 22, No. 11, pp. 5–11 (in Korean).

    Google Scholar 

  • Edil, T. B., Benson, C. H., Bin-Shafique, M. S., Tanyu, B. F., Kim W., and Senol, A. (2002). “Field evaluation of construction alternatives for roadways over soft subgrade.” Transportation Research Record, No. 1786, pp. 36–48, DOI: 10.3141/1786-05.

    Article  Google Scholar 

  • Fernandez-Turiel, J. L., Georgakopoulos A., Gimeno D., Papastergios G., and Kolovos, N. (2004). “Ash deposition in a pulverized coalfired power plant after high-calcium lignite combustion.” Energy & Fuels, Vol. 18, Issue 5, pp 1512–1518, DOI: 10.1021/ef0400161.

    Article  Google Scholar 

  • Feuerborn, H. J. and Eck, T. (2010). “Coal combustion products in Europe-production, qualities and use, today and tomorrow.” Proceedings of the International Conference Euro Coal Ash 2010, Copenhagen, Denmark, pp. 9–18.

    Google Scholar 

  • European Coal Combustion Products Association (ECOBA) (2007). Production and utilisation of CCPs in 2006 in Europe (EU 15).

    Google Scholar 

  • Freidi, C. (2007). “Cementless pressed blocks from waste products of coal-firing power station,” Construction and Building Materials, Vol. 21, Issue 1, pp. 12–18, DOI: 10.1016/j.conbuildmat.2005.08.002.

    Article  Google Scholar 

  • Gao, Y. M., Shim, H. S., Hurt, R. H., and Suuberg, E. M. (1997). “Effects of carbon on air entrainment in fly ash concrete: The role of soot and carbon black.” Energy Fuels, Vol. 11, Issue 2, pp 457–462, DOI: 10.1021/ef960113x.

    Article  Google Scholar 

  • Ghafoori, N. and Bucholc, J. (1996). “Investigation of lignite-based bottom ash for structural concrete.” Journal of Materials in Civil Engineering, Vol. 8, No 3, pp. 128–137, DOI: 10.1061/(ASCE)0899-1561(1996)8:3(128).

    Article  Google Scholar 

  • Ghafoori, N. and Bucholc, J. (1997). “Properties of high-calcium dry bottom ash concrete.” ACI Materials Journal, Vol. 94, No. 2, pp. 90–101, DOI: 10.14359/289.

    Google Scholar 

  • Ghafoori, N. and Cai, Y. (1998a). “Laboratory-made RCC containing dry bottom ash: Part I-mechanical properties.” ACI Material Journal, Vol. 95, Issue 2, pp. 121–130, DOI: 10.14359/357.

    Google Scholar 

  • Ghafoori, N. and Cai, Y. (1998b). “Laboratory-made roller compacted concrete containing dry bottom ash: Part II — Long-term durability.” ACI Material Journal, Vol. 95, Issue 3, pp. 244–251, DOI: 10.14359/368.

    Google Scholar 

  • Ghazavi M., Hosseini M., and Mollanouri, M. (2008). “A comparison between angle of repose and friction angle of sand.” Proceedings of the 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), Goa, India, pp. 1272–1275.

    Google Scholar 

  • Gong X., Wu T., Qiao Y., and Xu, M. (2010). “In situ leaching of trace elements in a coal ash dump and time dependence laboratory evaluation.” Energy Fuels, Vol. 24, Issue 1, pp 84–90, DOI: 10.1021/ef9005115.

    Article  Google Scholar 

  • Goodarzi, F. and Huggins, F. E. (2001). “Monitoring the species of arsenic, chromium and nickel in milled coal, bottom ash and fly ash from a pulverized coal-fired power plant in western Canada.” Journal of Environmental Monitoring, Vol. 3, pp. 1–6, DOI: 10.1039/B006733O.

    Article  Google Scholar 

  • Gupta, V. K., Mittal A., Krishnan L., and Gajbe, V. (2004). “Adsorption kinetics and column operations for the removal and recovery of malachite green from wastewater using bottom ash.” Separation and Purification Technology, Vol. 40, Issue 1, pp. 87–96, DOI: 10.1016/j.seppur.2004.01.008.

    Article  Google Scholar 

  • Gupta, V. K., Mittal A., Krishnan L., and Mittal, J. (2006). “Adsorption treatment and recovery of the hazardous dye, Brilliant Blue FCF, over bottom ash and de-oiled soya.” Journal of Colloid and Interface Science, Vol. 293, Issue 1, pp. 16–26, DOI: 10.1016/j.jcis.2005.06.02.

    Article  Google Scholar 

  • Han, S. G. and Min, O. S. (2009). “Environmental contaminations near Tae-an thermal power plant: Massive death of gray mullets.” Daejeon City Journal, http://www.gocj.net/news/15998 (in Korean).

    Google Scholar 

  • Hinckley, C. C., Smith, G. V., Twardowska H., Saporoschenko M., Shiley, R. H., and Griffen, R. A. (1980). “Mössbauer studies of iron in Lurgi gasification ashes and power plant fly and bottom ash.” Fuel, Vol. 59, pp. 161–165, DOI: 10.1016/0016-2361(80)90160-X.

    Article  Google Scholar 

  • Huang, W. H. and Lovell, C. W. (1990). “Bottom ash as embankment material.” Geotechnics of Waste Fills-Theory and Practice, ASTM STP 1070 American Society of Testing and Materials, Philadelphia.

    Google Scholar 

  • International Energy Agency (IEA) (2009). World energy outlook 2009 — Executive summary, OECD/IEA Electricity Information.

    Google Scholar 

  • Jang, Y. I. (2010). A study on the mechanical properties and application of porous concrete using bottom ash aggregate and new-material for performance improvement, PhD Thesis, Chungnam National University, (in Korean).

    Google Scholar 

  • Jang, A. and Kim, I. S. (2000). “Solidification and stabilization of Pb, Zn, Cd and Cu in tailing wastes using cement and fly ash.” Minerals Engineering, Vol. 13, Issues 14–15, pp. 1659–1662, DOI: 10.1016/S0892-6875(00)00151-5.

    Article  Google Scholar 

  • Jeon, H. (2007). A study on plasticity of clay based green bodies and production of ecological lightweight aggregate by using recycling resources, MSc Thesis, Kyonggi University (in Korean).

    Google Scholar 

  • Jeong, H. S. (2009). Preparation and properties of artificial aggregate materials from coal ash-clay system, MSc Thesis, Kangwon National University (in Korean).

    Google Scholar 

  • Jin, H. S., Kang, W. H., and Park, J. Y. (2002). “Leaching characteristics of coal-fired bottom ash and its stabilization/solidification products using waste lime.” Journal of Korean Society of Environmental Engineers, Vol. 24, No. 3, pp. 389–399 (in Korean).

    Google Scholar 

  • Joshi, R. C., Duncan, D. M., and McMaster, H. M. (1975). “New and conventional engineering uses of fly ash.” Transportation Engineering Journal, Volume 101, Issue 4, pp. 791–806.

    Google Scholar 

  • Kang, C. H. (2010a). A Study on the mechanical properties and environmental hazardousness of environment-friendly highly ductile cementitious composites, MSc Thesis, Chungnam National University (in Korean).

    Google Scholar 

  • Kang, H. S. (2010b). Engineering properties of waste tire powder-added lightweight soil for recycling industrial by-products, MSc Thesis, Pukyong National University (in Korean).

    Google Scholar 

  • Karim A., Salgado R., and Lovell, C. W. (1997). “Building embankments of coal combustion fly ash-bottom ash mixtures.” 48th Highway Geology Symposium Proceedings and Fieldtrip Excursion Guide, Knoxville, Tennessee, pp. 66–74.

    Google Scholar 

  • Katz, A. and Kovler, K. (2004). “Utilization of industrial by-products for the production of Controlled Low Strength Materials (CLSM).” Waste Management, Vol. 24, Issue 5, pp. 501–512, DOI: 10.1016/S0956-053X(03)00134-X.

    Article  Google Scholar 

  • Kayabalý, K. and Bulus, G. (2000). “The usability of bottom ash as an engineering material when amended with different matrices.” Engineering Geology, Vol. 56, Issues 3–4, pp. 293–303, DOI: 10.1016/S0013-7952(99)00097-6.

    Article  Google Scholar 

  • Ke, T. C. and Lovell, C. W. (1992). “Corrosivity of Indiana bottom ash.” Transportation Research Record, Issue 1345, pp. 113–117.

    Google Scholar 

  • Kerkhoff, G. O. (1968). “Bottom ash and wet bottom slag.” Annual Soils Engineers Meeting of the Michigan Department of Transportation, Michigan Department of Transportation, Lansing, Michigan.

    Google Scholar 

  • Kizgut S., Cuhadaroglu D., and Samanli, S. (2010). “Stirred grinding of coal bottom ash to be evaluated as a cement additive.” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Vol. 32, Issue 16, pp. 1529–1539, DOI: 10.1080/15567030902780378.

    Article  Google Scholar 

  • Kim, B. J. (2003). Properties of coal ash mixtures and their use in highway embankments, PhD Thesis, Purdue University.

    Google Scholar 

  • Kim, B. J., Prezzi M., and Salgado, R. (2005). “Geotechnical properties of fly and bottom ash mixtures for use in highway embankments.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 131, Issue 7, pp. 914–924, DOI: 10.1061/(ASCE)1090-0241(2005) 131:7(914).

    Article  Google Scholar 

  • Kim, H. K. (2013). Internal curing and improved chloride resistance of high-strength concrete amended with coal bottom ash, PhD Thesis, Korea Advanced Institute of Science and Technology.

    Google Scholar 

  • Kim, H. K. and Lee, H. K. (2011). “Use of power plant bottom ash as fine and coarse aggregates in high-strength concrete.” Construction and Building Materials, Vol. 25, Issue 2, pp. 1115–1122, DOI: 10.1016/j.conbuildmat.2010.06.065.

    Article  Google Scholar 

  • Kim, H. K., Jeon, J. H., and Lee, H. K. (2012). “Workability, and mechanical, acoustic and thermal properties of lightweight aggregate concrete with a high volume of entrained air.” Construction and Building Materials, Vol. 29, pp. 193–200; DOI: 10.1016/j.conbuildmat.2011.08.067.

    Article  Google Scholar 

  • Kim, J. H. J., Lim, Y. M., Won, J. P., and Park, H. G. (2010). “Fire resistant behavior of newly developed bottom-ash-based cementitious coating applied concrete tunnel lining under RABT fire loading.” Construction and Building Materials, Vol. 24, Issue 10, pp. 1984–1994; DOI: 10.1016/j.conbuildmat.2010.04.001.

    Article  Google Scholar 

  • Kim, K. N. and Park, J. S. (2010). “Stabilization of heavy metals in mine tailing using coal bottom ash and clay and its recycling.” Journal of Korean Solid Wastes Engineering Society, Vol. 27, No. 5, pp. 398–404. (in Korean)

    Google Scholar 

  • Kim, S. C. (2009). Applicability study of bottom ash for use of sand mat material, MSc Thesis, Sunchon National University, South Korea (in Korean).

    Google Scholar 

  • Kochert S., Ricci D., Sorrenti R., and Bertolino, M. (2009). “Transforming bottom ash into fly ash in coal fired power stations.” 2009 World of Coal Ash (WOCA) Conference, Lexington, KY.

    Google Scholar 

  • Koehler, K. C. (2002). “Hydrology monitoring and ccb placement at Trapper mine.” Proceedings of Coal Combustion By-Products and Western Coal Mines: A Technical Interactive Forum, Golden, Colorado, pp. 123–125.

    Google Scholar 

  • Kolay, P. K. and Singh, D. N. (2001). “Physical, chemical, mineralogical, and thermal properties of cenospheres from an ash lagoon.” Cement and Concrete Research, Vol. 31, Issue 4, pp. 539–542, DOI: http://dx.doi.org/10.1016/S0008-8846(01)00457-4.

    Article  Google Scholar 

  • Kolay, P. K. and Singh, D. N. (2002). “Application of coal ash in fluidized thermal beds.” Journal of Materials in Civil Engineering, Vol. 14, Issue 5, pp. 441–444, DOI: 10.1061/(ASCE)0899-1561 (2002)14:5(441).

    Article  Google Scholar 

  • Kopsick, D. A. and Angino, E. E. (1981). “Effect of leachate solutions from fly and bottom ash on groundwater quality.” Journal of Hydrology, Vol. 54, Issues 1–3, pp. 341–356, DOI: 10.1016/0022-1694(81)90167-0.

    Article  Google Scholar 

  • Kowapradit S., Pongnak W., and Soytong, K. (2007). “Biological ash from bottom coal ash mixed with beneficial fungi on the growth of rice var Pathumthani 1.” Journal of Agricultural Technology, Vol. 3, Issue 1, 2007, pp. 129–136.

    Google Scholar 

  • Ksaibati, K. and Conner, G. L. (2004). Laboratory evaluation of bottom ash asphalt mixes, Department of Civil & Architectural Engineering, University of Wyoming.

    Google Scholar 

  • Ksaibati, K. and Sayiri, S. R. K. (2006). Utilization of Wyoming bottom ash in asphalt mixes, Department of Civil & Architectural Engineering, University of Wyoming.

    Google Scholar 

  • Ksaibati, K. and Stephen, J. (1999). Utilization of bottom ash in asphalt mixes, Department of Civil & Architectural Engineering, University of Wyoming.

    Google Scholar 

  • Kula I., Olgun A., Erdogan Y., and Sevinc, V. (2001). “Effects of colemanite waste, cool bottom ash, and fly ash on the properties of cement.” Cement and Concrete Research, Vol. 31, Issue 3, pp. 491–494, DOI: 10.1016/S0008-8846(00)00486-5.

    Article  Google Scholar 

  • Kumar, S. and Stewart, J. (2003). “Evaluation of Illinois pulverized coal combustion dry bottom ash for use in geotechnical engineering applications.” Journal of Energy Engineering, Vol. 129, Issue 2, pp. 42–55, DOI: 10.1061/(ASCE)0733-9402(2003)129:2(42)

    Article  Google Scholar 

  • Kumar, S. and Vaddu, P. (2004a). “Time dependent strength and stiffness of PCC bottom ash-bentonite mixtures.” Soil and Sediment Contamination, Vol. 13, Issue 4, pp. 405–413, DOI: 10.1080/10588330490465996.

    Article  Google Scholar 

  • Kumar, S. and Vaddu, P. (2004b). “Swell potential of pulverized coal combustion bottom ash amended with sodium bentonite.” Journal of Energy Engineering, Vol. 130, Issue 2, pp. 54–65, DOI: 10.1061/(ASCE)0733-9402(2004)130:2(54).

    Article  Google Scholar 

  • Kurama, H. and Kaya, M. (2008). “Usage of coal combustion bottom ash in concrete mixture.” Construction and Building Materials, Vol. 22, Issue 9, 2008, pp. 1922–1928, DOI: 10.1016/j.conbuildmat.2007.07.008.

    Article  Google Scholar 

  • Kurama, H. Topçu, İ. B., and Karakurt, C. (2009). “Properties of the autoclaved aerated concrete produced from coal bottom ash.” Journal of Materials Processing Technology, Vol. 209, Issue 2, pp. 767–773, DOI: 10.1016/j.jmatprotec.2008.02.04.

    Article  Google Scholar 

  • Lee, D. Y. (2010). An experimental study on shear strength and clogging characteristics of bottom ash and rammed aggregate mixture compaction pile, MSc Thesis, Hanyang University (in Korean).

    Google Scholar 

  • Lee, D. Y., Kang, H. N., and Chun, B. S. (2010a). “Characteristics on shear strength and clogging phenomenon of bottom ash and rammed aggregate mixture compaction pile.” Journal of Korean Geo-Environmental Society, Vol. 11, Issue 3, pp. 33–41 (in Korean).

    Google Scholar 

  • Lee, H. K., Kim, H. K., and Hwang, E. A. (2010b). “Utilization of power plant bottom ash as aggregates in fiber-reinforced cellular concrete.” Waste Management, Vol. 30, Issue 2, pp. 274–284, DOI: 10.1016/j.wasman.2009.09.043.

    Article  Google Scholar 

  • Lee, H. K. and Song, S. Y. (2010a). “Influence of fiber volume fraction and fiber type on mechanical properties of FRLACC.” Journal of Reinforced Plastics and Composites, Vol. 29, Issue 7, pp. 1089–1098, DOI: 10.1177/0731684409103702.

    Article  Google Scholar 

  • Lee, H. K. and Song, S. Y. (2010b). “Performance characteristics of lightweight aggregate cellular concrete containing polypropylene fibers.” Journal of Reinforced Plastics and Composites, Vol. 29, Issue 6, pp. 883–898, DOI: 10.1177/0731684408100741.

    Article  Google Scholar 

  • Lee, S. J., Seo, Y. C., Jang, Park, K. S., Baek, J. I., An, H. S., and Song, K. C. (2006). “Speciation and mass distribution of mercury in a bituminous coal-fired power plant.” Atmospheric Environment, Vol. 40, Issue 12, pp. 2215–2224, DOI: 10.1016/j.atmosenv.2005.12.013.

    Article  Google Scholar 

  • Lee, T. (2007). “Beneficial reuse of coal fly-ash as porous reactive aggregates for removal of hydrogen sulfide.” Materials Science Forum, Vol. 544–545, pp. 525–528, DOI: 10.4028/www.scientific.net/MSF.544-545.525.

    Article  Google Scholar 

  • Lee, Y. H. (2008). A study on the utilization of bottom ash as a substitute material for sand in vertical drain, MSc Thesis, Hanyang University, South Korea (in Korean).

    Google Scholar 

  • Leonards, G. A. and Bailey, B. (1982). “Pulverized coal ash as structural fill.” Journal of the Geotechnical Engineering Division, Vol. 108, pp. 517–531.

    Google Scholar 

  • Levandowski, J. and Kalkreuth, W. (2009). “Chemical and petrographical characterization of feed coal, fly ash and bottom ash from the Figueira Power Plant, Paraná, Brazil.” International Journal of Coal Geology, Vol. 77, Issues 3–4, pp. 269–281, DOI: 10.1016/j.coal.2008.05.005.

    Article  Google Scholar 

  • Lin, C. Y. and Yang, D. H. (2002). “Removal of pollutants from wastewater by coal bottom ash.” Journal of Environmental Science and Health, Part A Toxic/Hazardous Substances and Environmental Engineering, Vol. 37, Issue 8, pp. 1509–1522, DOI: 10.1081/ESE-120013273.

    Article  Google Scholar 

  • Lovell, C. W., Ke, T. C., Huang, W. H., and Lovell, J. E. (1991). “Bottom ash as highway material.” 70th Annual Meeting of the Transportation Research Board, Washington DC, Transportation Research Board.

    Google Scholar 

  • Ma, C. J., Kim, J. H., Kim, K. H., Tohno S., and Kasahara, M. (2010). “Specification of chemical properties of feed coal and bottom ash collected at a coal-fired power plant.” Asian Journal of Atmospheric Environment, Vols. 4–2, pp. 80–88.

    Article  Google Scholar 

  • Manz, O. E. (1997). “Worldwide production of coal ash and utilization in concrete and other products.” Fuel, Vol. 76, Issue 8, pp. 691–696, DOI: 10.1016/S0016-2361(96)00215-3.

    Article  Google Scholar 

  • Mindess, S. and Young, J. F. (2003). Concrete, 2nd Edition, Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Moulton, L. K. (1973). “Bottom ash and boiler slag.” Proceedings of the 3rd international ash utilization symposium, U.S. Bureau of Mines, Washington D.C., pp. 148–169.

    Google Scholar 

  • Moulton, L. K., Seals, R. K., and Anderson, D. A. (1973). “Utilization of ash from coal burning power plants in highway construction.” Transportation Research Record, Vol. 430, pp. 26–39.

    Google Scholar 

  • Naik, T. R., Chun, Y. M., Kraus, R. N., Ramme, B. W., and Siddique, R. (2004). “Precast concrete products using industrial by-products.” ACI Materials Journal, Vol. 101, Issue 3, pp. 199–206, DOI: 10.14359/13115.

    Google Scholar 

  • National Energy Technology Laboratory (NETL) (2006). Clean coal technology: Coal utilization by-products, Topical Report, No. 24, Department of Energy Office of Fossil Energy.

    Google Scholar 

  • Nisnevich, M. (1997). “Improving lightweight concrete with bottom ash.” Concrete International, Vol. 19, Issue 12, pp. 56–60.

    Google Scholar 

  • Nisnevich M., Sirotin G., Dvoskin L., and Eshel, Y. (2001). “Using high-volume fly ash in lightweight concrete with bottom ash as aggregate.” ACI Special Publication, Vol. 199, pp. 99–114, DOI: 10.14359/10486.

    Google Scholar 

  • Nisnevich M., Sirotin G., Schlesinger T., and Eshel, Y. (2008). “Radiological safety aspects of utilizing coal ashes for production of lightweight concrete.” Fuel, Vol. 87, Issues 8–9, pp. 1610–1616, DOI: 10.1016/j.fuel.2007.07.031.

    Article  Google Scholar 

  • Oh, S. W. (2004). “Economic analysis of dry bottom ash handling system in a pulverized coal thermal power plant in Korea.” Journal of Korean Institute of Resources Recycling, Vol. 13, Issue 5, pp. 51–56. (in Korean)

    Google Scholar 

  • Oh, S. W. (2005). “Economic analysis of dry bottom ash handling system in a pulverized coal thermal power plant in Korea (II) — Case study for retrofitting the existing facility.” Journal of Korean Institute of Resources Recycling, Vol. 14, Issue 2, pp. 56–61 (in Korean).

    Google Scholar 

  • Olgun, T. A., Erdogan Y., Ayhan Y., and Zeybek B., Development of ceramic tiles from coal fly ash and tincal ore waste, Ceramics International, Volume 31, Issue 1, pp. 153–158.

  • Ondov, J. M., Zoller, W. H., Olmez I., Aras, N. K., Gordon, G. E., Rancitelli, L. A., Abel, K. H., Filby, R. H., Shah, K. R., and Ragaini, R. C. (1975). “Elemental concentrations in the National Bureau of Standards’ environmental coal and fly ash Standard Reference Materials.” Analytical Chemistry, Vol. 47, Issue 7, pp. 1102–1109, DOI: 10.1021/ac60357a007.

    Article  Google Scholar 

  • Özkan, Ö., Yüksel I., and Muratoğlu, Ö. (2007). “Strength properties of concrete incorporating coal bottom ash and granulated blast furnace slag.” Waste Management, Vol. 27, Issue 2, pp. 161–167, DOI: 10.1016/j.ceramint.2004.04.007.

    Article  Google Scholar 

  • Park, S. B., Jang, Y. I., Lee J., and Lee, B. J. (2009a). “An experimental study on the hazard assessment and mechanical properties of porous concrete utilizing coal bottom ash coarse aggregate in Korea.” Journal of Hazardous Materials, Vol. 166, Issue 1, pp. 348–355, DOI: 10.1016/j.jhazmat.2008.11.054.

    Article  Google Scholar 

  • Park, S. B., Lee, B. J., and Jang, Y. I. (2009b). “An experimental study on the mechanical properties of concrete utilizing bottom ash and reinforcing fiber.” Journal of Korean Solid Wastes Engineering Society, Vol. 26, No. 2, pp. 135–143 (in Korean).

    Google Scholar 

  • Parker, J. M. (2002). “Colstrip steam electric station coal combustion by-product disposal.” Proceedings of Coal Combustion By-Products and Western Coal Mines: A Technical Interactive Forum, Golden, Colorado, pp. 115–122.

    Google Scholar 

  • Prakash, K. and Sridharan, A. (2006). “A geotechnical classification system for coal ashes.” Proceedings of the Institution of Civil Engineers — Geotechnical Engineering, Vol. 159, Issue 2, pp. 91–98, DOI: 10.1680/geng.2006.159.2.91.

    Article  Google Scholar 

  • Rao A., Anthony, E. J., Jia L., and Macchi, A. (2007). “Carbonation of FBC ash by sonochemical treatment.” Fuel, Vol. 86, Issue 16, pp. 2603–2615, DOI: 10.1016/j.fuel.2007.02.004.

    Article  Google Scholar 

  • Recycled Material Resource Center (RMRC). (2008). User guideline for byproducts and secondary use materials in pavement construction: Coal bottom ash/boiler slag.

    Google Scholar 

  • Robnett, Q. L. (1983). Use of boiler bottom ash as a paving material: A technical database, Final report (Phase I), Project No. E-20-657, School of Civil Engineering, Georgia Institute of Technology.

    Google Scholar 

  • Rogbeck, J. and Knutz, Å. (1996). “Coal bottom ash as light fill material in construction.” Waste Management, Vol. 16, Issues 1–3, pp. 125–128, DOI: 10.1016/S0956-053X(96)00035-9.

    Article  Google Scholar 

  • Sabbioni E., Goetz L., and Bignoli, G. (1984). “Health and environmental implications of trace metals released from coal-fired power plants: an situation in the European Community.” The Science of the Total Environment, Vol. 40, Issue 1, pp. 141–154, DOI: 10.1016/0048-9697(84)90348-6.

    Article  Google Scholar 

  • Sauer, J. J., Benson, C. H., and Edil, T. B. (2005). Metals leaching from highway test sections constructed with industrial byproducts, Geo Engineering, Department of Civil and Environmental Engineering, Geo Engineering Report No. 05–21, University of Wisconsin-Madison, Madison, WI.

  • Sear, L. and Grounds, T. (2010). “The use of furnace bottom ash for lightweight concrete.” Proceedings of the International Conference Euro Coal Ash 2010, 27–28 May, Copenhagen, Denmark.

    Google Scholar 

  • Shim, Y. H. (2009). Experimental study for early properties of waste recycling shotcrete with a combination of coal ash, MSc Thesis, Kangnung National University (in Korean).

    Google Scholar 

  • Shin W., Lim D., and Chun, B. (2010). “A study on self-hardening characteristics of coal ash by mixing ratio of fly ash and bottom ash.” Korean Geo-Environmental Society, Vol. 11, Issue 6, pp. 85–91 (in Korean).

    Google Scholar 

  • Singh, G. and Paul, B. C. (2001). “Assessment of groundwater quality impacts due to use of coal combustion by-products to control subsidence from underground mines.” Environment International, Vol. 26, Issues 7–8, pp. 567–571, DOI: 10.1016/S0160-4120(01)00042-3.

    Article  Google Scholar 

  • Slegel, D. L. and Davis, L. R. (1977). “Transient heat and mass transfer in soils in the vicinity of heated porous pipes.” Journal of Heat Transfer, Vol. 99, Issue 4, pp. 541–621, DOI: 10.1115/1.3450739.

    Article  Google Scholar 

  • Smith, K. P. and Goodman, R. M. (1999). “Host variation for interactions with beneficial plant-associated microbes.” Annual Review of Phytopathology, Vol. 37, pp. 473–491, DOI: 10.1146/annurev.phyto.37.1.473.

    Article  Google Scholar 

  • Stanislav, V. V. and Christina G. V. (2005). “Methods for characterization of composition of fly ashes from coal-fired power stations: A critical overview.” Energy Fuels, Vol. 19, Issue 3, pp 1084–1098, DOI: 10.1021/ef049694d.

    Article  Google Scholar 

  • Swaine, D. J. (2000). “Why trace elements are important.” Fuel Processing Technology, Vol. 65–66, pp. 21–33, DOI: 10.1016/S0378-3820(99)00073-9.

    Article  Google Scholar 

  • Tanyu, B. F., Kim W., Edil, T. B., and Benson, C. H. (2005). “Development of methodology to include structural contribution of alternative working platforms in pavement structure.” Transportation Research Record, No. 1936, DOI: 10.3141/1936-09.

  • Targan S., Olgun, T. A., Erdogan Y., and Sevinc, V. (2003). “Influence of natural pozzolan, colemanite ore waste, bottom ash, and fly ash on the properties of Portland cement.” Cement and Concrete Research, Vol. 33, Issue 8, pp. 1175–1182, DOI: 10.1016/S0008-8846(03)00025-5.

    Article  Google Scholar 

  • Thayumanavan P., Nelson, P. O., Azizian, M. F., Williamson, K. J., and Lundy, J. R. (2001). “Environmental impact of construction and repair materials on surface water and groundwater — Detailed evaluation of waste-amended highway materials.” Transportation Research Record, No. 1743, pp. 25–32, DOI: 10.3141/1743-04.

    Article  Google Scholar 

  • Theis, T. L. and Wirth, J. L. (1977). “Sorptive behavior of trace metals on fly ash in aqueous systems.” Environmental Science & Technology, Vol. 11, Issue 12, pp. 1096–1100, DOI: 10.1021/es60135a006.

    Article  Google Scholar 

  • Toth, P. S., Chan, H. T., and Cragg, C. B. (1988). “Coal ash as structural fill, with special reference to Ontario experience.” Canadian Geotechnical Journal, Vol. 25, Issue 4, pp. 694–704, DOI: 10.1139/t88-080.

    Article  Google Scholar 

  • Trifunovic, P. D., Marinkovic, S. R., Tokalic, R. D., and Matijasevic, S. D. (2010). “The effect of the content of unburned carbon in bottom ash on its applicability for road construction.” Thermochimica Acta, Vol. 498, Issues 1–2, pp. 1–6, DOI: 10.1016/j.tca.2009.10.022.

    Article  Google Scholar 

  • U.S. Code of Federal Regulation 40 (CFR 40) (1999). Maximum concentration of contaminants for the toxicity characteristic, 7-1-1999 Edition, Chapter I. Part 261.24.

    Google Scholar 

  • U.S. Environmental Protection Agency (EPA) (2010a). Bottom ash: Wastes — Resource conservation — Reduce, reuse, recycle — Industrial materials recycling.

    Google Scholar 

  • U.S. Environmental Protection Agency (EPA) (2010b). Boiler slag: Wastes — Resource conservation — Reduce, reuse, recycle — Industrial materials recycling.

    Google Scholar 

  • Vaddu, P. (2006). Time dependent stiffness, strength and swelling characteristics of PCC dry bottom ash amended with bentonite, MSc Thesis, Southern Illinois University Carbondale.

    Google Scholar 

  • Wang, S. and Li, V. C. (2007). “Engineered cementitious composites with high-volume fly ash.” ACI Materials Journal, Vol. 104, Issue 3, pp. 233–241, DOI: 10.14359/18668.

    Google Scholar 

  • Wei L., Naik, T. R., and Golden, D. M. (1994). “Construction materials made with coal combustion by-products.” Cement, Concrete & Aggregates, Vol. 16, No. 1, pp. 36–42.

    Article  Google Scholar 

  • Yun, M. G. (2010). Immobilization of soil bacteria with coal bottom ash for using as microbial carrier, MSc Thesis, Gyeongsang National University.

    Google Scholar 

  • Yüksel, İ. and Bilir, T. (2007). “Usage of industrial by-products to produce plain concrete elements.” Construction and Building Materials, Vol. 21, Issue 3, pp. 686–694, DOI: 10.1016/j.conbuildmat.2006.06.031.

    Article  Google Scholar 

  • Yüksel, I. and Genç, A. (2007). “Properties of concrete containing nonground ash and slag as fine aggregate.” ACI Materials Journal, Vol. 104, Issue 4, pp. 397–403, DOI: 10.14359/18829.

    Google Scholar 

  • Yüksel, İ., Bilir T., and Özkan, Ö. (2007). “Durability of concrete incorporating non-ground blast furnace slag and bottom ash as fine aggregate.” Building and Environment, Vol. 42, Issue 7, pp. 2651–2659, DOI: 10.1016/j.buildenv.2006.07.003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. K. Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.K., Lee, H.K. Coal bottom ash in field of civil engineering: A review of advanced applications and environmental considerations. KSCE J Civ Eng 19, 1802–1818 (2015). https://doi.org/10.1007/s12205-015-0282-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-015-0282-7

Keywords

Navigation