Skip to main content
Log in

Effect of metakaolin on the chloride ingress properties of concrete

  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

Research and practical experience have shown that partial replacement of cement by metakaolin improves concrete durability as a result of the refinement of the pore structure. While much research has been presented on concrete performance with metakaolin, it is scarce concerning the transport properties of chlorides in concrete with metakaolin, in natural conditions (i.e., un-accelerated). This study determines the chloride diffusion coefficients for several concretes with vary levels of cement replacement with metakaolin, and compares these results with chloride migration coefficients obtained from accelerated laboratory testing. In this study, two cement types (CEM I 42,5R and CEM IV/A 42,5) and two cement contents levels where used with metakaolin replacement levels varying from 10-20%. Concretes where tested for fresh properties, compressive strength, electrical resistivity, chloride ingress characteristics (natural diffusion and migration), and mercury intrusion porosimetry. The results show improved strength, durability properties and chloride penetration resistance of concretes with metakaolin. Furthermore, the use of metakaolin in fly ash concrete improves the early age performance of the concrete (<90 days), counteracting the delay in strength and durability gain typically associated with fly ash concrete. The results obtained from this study fulfil the lack of critical input for service life design models of reinforced concrete structures in chloride environments, with emphasis on concretes with metakaolin replacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AASHTO Standard T277-93 (1993). Standard method of test for electrical indication of concrete’s ability to resist chloride, jAmerican Association of State Highway & Transportation Officials, Washington DC.

    Google Scholar 

  • Abell, A. B., Willis, K. L., and Lange, D. A. (1999). “Mercury intrusion porosimetry and image analysis of cement-based materials.” Journal of Colloid & Interface Science, Vol. 211, No. 1, pp. 39–44, DOI: 10.1006/jcis.1998.5986.

    Article  Google Scholar 

  • Aguayo, M., Yang, P., Vance, K., Sant, G., and Neithalath, N. (2014) Electrically driven chlorides ion transport in blended binder concretes: Insights from experiments and numerical simulations, C&CR 66, pp. 1–10.

    Google Scholar 

  • Antoni, M., Rossen, J., Martirena, F., and Scrivener, K. (2012). “Cement substitution by a combination of metakaolin and limestone.” Cement & Concrete Research, Vol. 42, No. 12, pp. 1579–1589, DOI: 10.1016/j.cemconres.2012.09.006.

    Article  Google Scholar 

  • ASTM C 1202 (2010). Standard test method for electrical indication of concrete’s ability to resist chloride ion penetration, ASTM.

    Google Scholar 

  • ASTM C 618 - 08a (2008). Standard specification for coal fly ash and raw or calcined natural pozzolan for use in Concrete, ASTM.

    Google Scholar 

  • Bai, J. and Gailius, A. (2009). “Consistency of fly ash and metakaolin concrete.” Journal of Civil Engineering & Management, Vol. 15, No. 2, pp. 131–135, DOI: 10.3846/1392-3730.2009.15.131-135.

    Article  Google Scholar 

  • Boddy, A., Hooton, R. D., and Gruber, K.A. (2001). “Long-term testing of the chloride-penetration resistance of concrete containing highreactivity metakaolin.” Cement & Concrete Research, Vol. 31, No. 5, pp. 759–765, DOI: 10.1016/S0008-8846(01)00492-6.

    Article  Google Scholar 

  • Cabrera, J. and Nwaubani S. (1998). The microstructure and chloride ion diffusion characteristics of cements containing metakaolin and fly ash, VICANMET/ACI Int. Conf. Fly ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Vol. I. Bangkok, pp. 493–506.

    Google Scholar 

  • Camões, A., Cruz, P., Jalali, S., and Ferreira, R. M. (2004b). Increasing concrete durability with metakaolin and latex–A case study, BE2004. Encontro Nacional Betão Estrutural. Porto, 17-19 November, pp. 227–234.

    Google Scholar 

  • Camões, A. and Reis, R. (2011). “Eco-efficient ternary mixtures incorporating fly ash and metakaolin.” Int. Conf. Sustainability of Constructions — Towards a better built environment. Innsbruck, 3–5 February, pp. 71–78.

    Google Scholar 

  • Camões, C., Cruz, P., Jalali, S., Ferreira, R. M., and Cunha, P. (2004a). Durability performance of concrete bridge piers made with metakaolin and latex mixes, IABMAS’04. 2nd Int. Conf. Bridge Maintenance Safety & Management. Kyoto, 18–22 October

    Google Scholar 

  • Coleman, N. and Page, C. L. (1997). “Aspects of the pore solution chemistry of hydrated cement pastes containing metakaolin.” Cement & Concrete Research, Vol. 27, No. 1, pp. 147–154, DOI: 10.1016/S0008-8846(96)00184-6.

    Article  Google Scholar 

  • Courard, L., Darimont, A., Schouterden, M., Ferauche, F., Willem, X., and Degeimbre, R. (2003). “Durability of mortars modified with metakaolin.” Cement & Concrete Research, Vol. 33, No. 9, pp. 1473–1479, DOI: 10.1016/S0008-8846(03)00090-5.

    Article  Google Scholar 

  • Ferreira, R. M. (2000). Assessment of concrete durability_tests, Master Thesis, University of Minho, School of Engineering, Guimarães (In Portuguese), p. 245.

    Google Scholar 

  • Ferreira, R. M. (2008). “Improving durability performance of reinforced concrete structures with probabilistic analysis.” Int. J. Concrete Struct & Materials, Vol. 2, No. 2, pp. 137–144.

    Article  Google Scholar 

  • Ferreira, R. M. (2010). “Quality control of concrete with electrical resistivity measurements.” Concrete Plant Int.–CPI, 05, pp. 82–87.

    Google Scholar 

  • Ferreira, R. M. (2010b). “Optimization of RCstructure performance in marine environment.” Engineering Structures, Vol. 32, No. 5, pp. 1489–1494.

    Article  Google Scholar 

  • Frias, M. and Cabrera, J. (2000). “Pore size distribution and degree of hydration of metakaolin — cement pastes.” Cement Concrete Research, Vol. 30, No. 4, pp. 561–569, DOI: 10.1016/S0008-8846(00)00203-9.

    Article  Google Scholar 

  • Gruber, K. A., Ramlochan, T., Boddy, A., Hooton, R. D., and Thomas, M. D. A. (2001). “Increasing concrete durability with high–reactivity metakaolin.” Cement & Concrete Composites, Vol. 23, No. 6, pp. 479–484, DOI: 10.1016/S0958-9465(00)00097-4.

    Article  Google Scholar 

  • Hornbostel, K., Larsen, C. K., and Geiker, M. R. (2013). “Relationship between concrete resistivity and corrosion rate — A literature review.” Cement & Concrete Composites, Vol. 39, pp. 60–72, DOI: 10.1016/j.cemconcomp.2013.03.019.

    Article  Google Scholar 

  • Huat, O. C. (2006). Performance of concrete containing metakaolin as cement replacement material, Master Thesis, Faculty of Civil Engineering, Universiti Teknologi Malaysia.

    Google Scholar 

  • Jalali, S., Peyroteo, A., J., and Ferreira, R. M. (2006). “From waste product to metakaolin — Beneficial impact on performance parameters.” Proc. Int. RILEM Wksp. Performance based evaluation and indicators for concrete durability, Madrid, 19–21 March, pp. 327–333.

    Google Scholar 

  • Justice, J. M., Kennison, L.H., Mohr, B.J., Beckwith, S.L., McCormick, L.E., Wiggins, B., Zhang, Z. Z., and Kurtis, K. E. (2005). “Comparison of two metakaolins and silica fume used as supplementary cementitious materials.” 7th Int. Symp. Utilization of High-Strength/High Performance Concrete, SP-228, Vol. 1, ACI, pp. 213–236.

    Google Scholar 

  • Khater, H. (2011). “Influence of metakaolin on resistivity of cement mortar to magnesium chloride solution.” J. Materials Civil Engineering, Vol. 23, No. 9, pp. 1295–1301, DOI: 10.1061/(ASCE)MT.1943-5533.0000294.

    Article  Google Scholar 

  • Khatib, J. M. and Wild, S. (1996). “Pore size distribution of metakaolin paste.” Cement & Concrete Research, Vol. 26, No. 10, pp. 1545–1553, DOI: 10.1016/0008-8846(96)00147-0.

    Article  Google Scholar 

  • Kim, H. S., Lee, S. H., and Moon, H. Y. (2007). “Strength properties and durability aspects of HSC using Korean metakaolin.” Construction & Building Materials, Vol. 21, No. 6, pp. 1229–1237, DOI: 10.1016/j.conbuildmat.2006.05.007.

    Article  Google Scholar 

  • LNEC E 390 (1993). Concrete, Determining the resistance to chloride penetration, Immersion test. LNEC, Lisbon (in Portuguese).

    Google Scholar 

  • LNEC E 465 (2007). Concrete, Methodology for estimating the performance properties of the concrete allowing to comply with the design working life of the reinforced or prestressed concrete structures under the environmental exposures XC and XS(in portuguese) LNEC, p. 24.

    Google Scholar 

  • Model Code for Service Life Design (2006). Bulletin 34, FIB, Lausanne.

    Google Scholar 

  • Nokken, M. R., Boddy, A., Hooton, R. D., and Thomas, M. D. (2006). “Time–dependant diffusion in concrete–Three laboratory studies.” Cement & Concrete Research, Vol. 36, No. 1, pp. 200–207, DOI: 10.1016/j.cemconres.2004.03.030.

    Article  Google Scholar 

  • NP EN12390-3 (2009). Testing hardened concrete, Compressive strength of test specimens, IPQ, Lisbon.

    Google Scholar 

  • NP EN197-1 (2001). Cement, Part 1: Composition, specifications and conformity criteria for common cements, IPQ, Lisbon.

    Google Scholar 

  • NP EN206-1 (2007). Concrete, Part 1: Specification, performance, production and conformity, IPQ, Lisbon.

    Google Scholar 

  • NT BUILD 492 (1999). Chloride migration coefficient from non-steady state migration experiments, NORTEST.

    Google Scholar 

  • PE-002 (2005). Concrete, Electrical resistivity — Measuring the electrical resistivity of a concrete element. Construction Materials Laboratory, University of Minho, p. 9 (in Portuguese).

    Google Scholar 

  • Poon, C. S., Kou, S. C., and Lam, L. (2006). “Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete.” Construction & Building Materials, Vol. 20, No. 10, pp. 858–865, DOI: 10.1016/j.conbuildmat.2005.07.001.

    Article  Google Scholar 

  • Ramezanianpour, A. A. and Bahrami Jovein, H. (2012). “Influence of metakaolin as supplementary cementing material on strength and durability of concretes.” Construction & Building Materials, Vol. 30, pp. 470–479, DOI: 10.1016/j.conbuildmat.2011.12.050.

    Article  Google Scholar 

  • Rashad, A. M. (2013). “Metakaolin as cementitious material: History, scours, production and composition — A comprehensive overview.” Construction & Building Materials, Vol. 41, No. 6, pp. 303–318, DOI: 10.1016/j.conbuildmat.2012.12.001.

    Article  Google Scholar 

  • Sabir, S. S., Wild, S., and Bai, J. (2001). “Metakaolin and calcined clays as pozzolans for concrete: A review.” Cement & Concrete Composites, Vol. 23, No. 6, pp. 441–454, DOI: 10.1016/S0958-9465(00)00092-5.

    Article  Google Scholar 

  • Siddique, R. and Klaus, J. (2009). “Influence of metakaolin on the properties of mortar and concrete: A review.” Applied Clay Science, Vol. 43, Nos. 3–4, pp. 392–400, DOI: 10.1016/j.clay.2008.11.007.

    Article  Google Scholar 

  • Srivastava, V., Kumar, R., Agarwal, V. C., and Mehta, P. K. (2012). “Effect of silica fume and metakaolin combination on concrete.” IJ Civil & Structural Eng., Vol. 2, No. 3, pp. 893–900, DOI: 10.6088/ijcser.00202030017.

    Google Scholar 

  • Trejo, D. and Halmen, C. (2006). Evaluation of Thiele metakaolin for applications in concrete, Progress Report, Texas A&M University.

    Google Scholar 

  • Zeljkovic, M. (2009). Metakaolin effects on concrete durability, MSc Thesis, University of Toronto.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Ferreira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, R.M., Castro-Gomes, J.P., Costa, P. et al. Effect of metakaolin on the chloride ingress properties of concrete. KSCE J Civ Eng 20, 1375–1384 (2016). https://doi.org/10.1007/s12205-015-0131-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-015-0131-8

Keywords

Navigation