Skip to main content
Log in

Spatial and temporal contours in economic losses from natural disasters: A case study of Florida

  • Coastal and Harbor Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

In this study, we addressed impacts of natural disasters on economic status in coastal and disaster-prone areas within the context of previous theoretical and empirical literature. Our spatio-temporal model accounted for nonlinear causality and spatial heterogeneity in assessment of unexpected disaster events employing a Matérn covariance structure, an empirical variogram, kriging, spatial regression, and spatial-temporal model. Empirically, we developed this model to estimate the natural disaster risk using county-level data in the U.S. State of Florida. Despite high prediction errors, empirical results suggest that both Atlantic and Gulf Coast counties experienced significant negative economic impacts of natural disasters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, D. E. (2000). Confronting catastrophe: New perspectives on natural disasters, Oxford University Press.

    Google Scholar 

  • Burton, I. and Kates, R. W. (1964). “The perception of natural hazards in resource management.” Natural Resources Journal, Vol. 3, No. 3, pp. 412–441.

    Google Scholar 

  • Christakos, G. (1992). Random field models in earth sciences, Academic Press, San Diego.

    Google Scholar 

  • Corbeil, R. and Searle, S. (1976). “Restricted Maximum Likelihood (REML) estimation of variance components in the mixed model.” Technometrics, Vol. 18, No. 1, pp. 31–38.

    Article  MATH  MathSciNet  Google Scholar 

  • Cressie, N. A. C. (1993). Statistics for spatial data, 2nd Ed., John Wiley, New York.

    Google Scholar 

  • Cutter, S. L., Boruff, B. J., and Shirley, W. L. (2003). “Social vulnerability to environmental hazards.” Social Science Quarterly, Vol. 84, No. 2, pp. 242–261.

    Article  Google Scholar 

  • Cutter, S. L. and Finch, C. (2008). “Temporal and spatial changes in social vulnerability to natural hazards.” Proceedings of the National Academy of Science of the United States of America, Vol. 105, No. 7, pp. 2301–2306.

    Article  Google Scholar 

  • Daniels, R. J., Kettl, D. F., and Kunreuther, H. (2006). On risk and disaster: Lessons from Hurricane Katrina, University of Pennsylvania Press, Philadelphia, U.S.

    Book  Google Scholar 

  • Drabek, T. E. (1989). “Disasters as nonroutine social problems.” International Journal of Mass Emergencies and Disasters, Vol. 7, No. 3, pp. 253–264.

    Google Scholar 

  • Ecker, M. D. and Gelfand, A. E. (1999). “Bayesian modeling and inference for geometrically anisotropic spatial data.” Mathematical Geology, Vol. 31, No. 1, pp. 67–83.

    Google Scholar 

  • Ewing, B. T., Kruse, J. B., and Thompson, M. A. (2009). “Twister! Employment responses to the 3 May 1999 Oklahoma City tornado.” Applied Economics, Vol. 41, No. 6, pp. 691–702.

    Article  Google Scholar 

  • Finkenstädt, B., Held, L., and Isham, V. (2007). Statistical methods for spatio-temporal systems, Chapman & Hall/CRC.

    MATH  Google Scholar 

  • Gneiting, T. and Sasvari, Z. (1999). “The characterization problem for isotropic covariance functions.” Mathematical Geology, Vol. 31, No. 1, pp. 105–111.

    MATH  MathSciNet  Google Scholar 

  • Haas, T. C. (2002). “New systems for modeling, estimating, and predicting a multivariate spatio-temporal process.” Environmetrics, Vol. 13, No. 4, pp. 311–332.

    Article  MathSciNet  Google Scholar 

  • Haining, R. P. (2003). Spatial data analysis: Theory and practice, Cambridge University Press.

    Book  Google Scholar 

  • Ham, H., Kim, T. J., and Boyce, D. E. (2005). “Assessment of economic impacts from unexpected events using an interregional commodity flow and multimodal transportation network model.” Transportation Research A, Vol. 39, No. 10, pp. 849–860.

    Google Scholar 

  • Harris, P., Charlton, M., and Fotheringham, A. S. (2010). “Moving window kriging with geographically weighted variograms.” Stochastic Environmental Research Risk Assessment, Vol. 24, No. 8, pp. 1193–1209.

    Article  Google Scholar 

  • Iaco, S. D., Myers, D. E., and Posa, D. (2002). “Nonseparable spacetime covariance models: some parametric families.” Mathematical Geology, Vol. 34, No. 1, pp. 23–42.

    Article  MATH  MathSciNet  Google Scholar 

  • Jun, M. and Stein, M. L. (2007). “An approach to producing space-time covariance functions on spheres.” Technometrics, Vol. 49, No. 4, pp. 468–479.

    Article  MathSciNet  Google Scholar 

  • Kahn, M. E. (2005). “The death toll from disasters: The role of income, geography and institution.” The Review of Economics and Statistics, Vol. 87, No. 2, pp. 271–284.

    Article  Google Scholar 

  • Kellenberg, D. K. and Mobarak, A. M. (2008). “Does rising income increase or decrease damage risk from natural disasters?.” Journal of Urban Economics, Vol. 63, No. 3, pp.778–802.

    Article  Google Scholar 

  • Kumar, A. and Pandey, A. C. (2013). “Spatio-temporal assessment of urban environmental conditions in Ranchi Township, India using remote sensing and geographical information system techniques.” International Journal of Urban Sciences, Vol. 17, No. 1, pp. 117–141.

    Article  Google Scholar 

  • Lloyd, C. D. (2010). “Nonstationary models for exploring and mapping monthly precipitation in the United Kingdom.” International Journal of Climatology, Vol. 30, No. 3, pp. 390–405.

    MathSciNet  Google Scholar 

  • Ma, C. (2005). “Spatio-temporal variograms and covariance models.” Advances in Applied Probability, Vol. 37, No. 3, pp. 706–725.

    Article  MATH  MathSciNet  Google Scholar 

  • Matérn, B. (1986). Spatial variation 2nd ed.: Lecture notes in statistics 36 and Ed., Springer, Berlin.

    Book  Google Scholar 

  • Mileti, D. S. (1991). Disasters by design: A reassessment of natural hazards in the United States, Joseph Henry Press, Washington, D.C.

    Google Scholar 

  • Nelson, H. L. and Granger, C. W. J. (1979). “Experience with using the box-cox transformation when forecasting economic time series.” Journal of Econometrics, Vol. 10, No. 1, pp. 57–69.

    Article  MATH  Google Scholar 

  • O’connell, M. and Wolfinger, R. D. (1997). “Spatial regression models, response surface, and process optimization.” Journal of Computational and Graphical Statistics, Vol. 6, No. 2, pp. 224–241.

    Google Scholar 

  • Okuyama, Y., Hewings, G. J. D., and Sonis, M. (2004). “Measuring economic impacts of disasters: Interregional input-output analysis using sequential interindustry model. In Okuyama, Y., Chang, S.E. (eds).” Modeling spatial and economic impacts of disasters, Springer, pp. 77–101.

    Chapter  Google Scholar 

  • Paciorek, C. J. and Schervish, M. J. (2006). “Spatial modeling using a new class of nonstationary covariance functions.” Environmetrics, Vol. 17, No. 5, pp. 483–526.

    Article  MathSciNet  Google Scholar 

  • Raddatz, C. (2007). “Are external shocks responsible for the instability of output in low-income countries?.” Journal of Development Economics, Vol. 84, No. 1, pp. 155–187.

    Article  Google Scholar 

  • Ribeiro, P. J. and Diggle, P. J. (2001) “GeoR: A package for geostatistical analysis.” R News, Vol. 1, No. 2, pp. 15–18.

    Google Scholar 

  • Sadowski, N. C. and Sutter, D. (2005). “Hurricane fatalities and hurricane damages: Are safer hurricanes more damaging?.” Southern Economic Journal, Vol. 72, No. 2, pp. 422–432.

    Article  Google Scholar 

  • Schabenberger, O. and Gotway, C. A. (2005). Statistical methods for spatial data analysis, CRC press.

    MATH  Google Scholar 

  • Sohn, J., Kim, T. J., and Hewings, G. J. D., Lee, J. S., and Jang, S. G. (2003). “Retrofit priority of transport network links under an earthquake.” ASCE Journal of Urban Planning and Development, Vol. 129, No. 4, pp. 195–210.

    Article  Google Scholar 

  • Spitzer, J. J. (1984). “Variance estimates in models with the box-cox transformation: Implication for estimation and hypothesis testing.” The Review of Economics and Statistics, Vol. 66, No. 4, pp. 645–652.

    Article  MathSciNet  Google Scholar 

  • Stein, M. L. (2005). “Space-time covariance functions.” Journal of the American Statistical Association, Vol. 100, No. 469, pp. 310–321.

    Article  MATH  MathSciNet  Google Scholar 

  • Toya, H. and Skidmore, M. (2007). “Economic development and the impacts of natural disasters.” Economics Letters, Vol. 94, No. 1, pp. 20–25.

    Article  Google Scholar 

  • Turner, B. A. (1976). “The development of disasters: A sequence model for the analysis of the origin of disasters.” Sociological Review, Vol. 24, No. 4, pp. 753–774.

    Article  Google Scholar 

  • Velilla, S. (1993). “A note on the multivariate box-cox transformation to normality.” Statistics & Probability Letters, Vol. 17, No. 4, pp. 259–263.

    Article  MATH  MathSciNet  Google Scholar 

  • Yang, D. (2008). “Coping with disaster: The impact of hurricanes on international financial flows.” Journal of Economic Analysis and Policy, Vol. 8, No. 1, pp. 1–14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Woosnam, K.M. & Marcouiller, W. Spatial and temporal contours in economic losses from natural disasters: A case study of Florida. KSCE J Civ Eng 19, 457–464 (2015). https://doi.org/10.1007/s12205-013-1116-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-013-1116-0

Keywords

Navigation